

Paheli and Boojho went to their uncle's house during the summer vacation. Their uncle is a farmer. One day they saw some tools like *khurpi*, sickle, shovel, plough, etc., in the field.

I want to know where and how we use these tools.

You have learnt that all living organisms require food. Plants can make their food themselves. Can you recall how green plants synthesise their own food? Animals including humans can not make their own food. So, where do animals get their food from?

But, first of all why do we have to eat food?

You already know that energy from the food is utilised by organisms for carrying out their various body functions, such as digestion, respiration and excretion. We get our food from plants, or animals, or both.

Since we all need food, how can we provide food to a large number of people in our country?

Food has to be produced on a large scale.

In order to provide food for a large population—regular production, proper management and distribution is necessary.

1.1 Agricultural Practices

Till 10,000 B.C.E. people were nomadic. They were wandering in groups from place to place in search of food and shelter. They ate raw fruits and vegetables and started hunting animals for food. Later, they could cultivate land and produce rice, wheat and other food crops. Thus, was born 'Agriculture'.

When plants of the same kind are cultivated at one place on a large scale, it is called a **crop**. For example, crop of wheat means that all the plants grown in a field are of that wheat.

You already know that crops are of different types like cereals, vegetables and fruits. These can be classified on the basis of the season in which they grow.

India is a vast country. The climatic conditions like temperature, humidity and rainfall vary from one region to another. Accordingly, there is a rich

variety of crops grown in different parts of the country. Despite this diversity, two broad cropping patterns can be identified. These are:

(i) Kharif Crops : The crops which are sown in the rainy season are called kharif crops. The rainy season in India is generally from June to September. Paddy, maize, soyabean, groundnut and cotton are kharif crops.

(ii) Rabi Crops : The crops grown in the winter season (October to March) are called rabi crops. Examples of rabi crops are wheat, gram, pea, mustard and linseed.

Besides these, pulses and vegetables are grown during summer at many places.

1.2 Basic Practices of Crop Production

Why paddy can not be grown in the winter season?

Paddy requires a lot of water. Therefore, it is grown only in the rainy season.

Cultivation of crops involves several activities undertaken by farmers over a period of time. You may find that these activities are similar to those carried out by a gardener or even by you when you grow ornamental plants in your house. These activities or tasks are referred

to as **agricultural practices** which are listed below:

- (i) Preparation of soil
- (ii) Sowing
- (iii) Adding manure and fertilisers
- (iv) Irrigation
- (v) Protecting from weeds
- (vi) Harvesting
- (vii) Storage

1.3 Preparation of Soil

The preparation of soil is the first step before growing a crop. One of the most important tasks in agriculture is to turn the soil and loosen it. This allows the roots to penetrate deep into the soil. The loose soil allows the roots to breathe easily even when they go deep into the soil. Why does the loosening of soil allow the roots to breathe easily?

The loosened soil helps in the growth of earthworms and microbes present in the soil. These organisms are friends of the farmer since they further turn and loosen the soil and add humus to it. But why the soil needs to be turned and loosened?

You have learnt in the previous classes that soil contains minerals, water, air and some living organisms. In addition, dead plants and animals get decomposed by soil organisms. In this way, various nutrients in the dead organisms are released back into the soil. These nutrients are again absorbed by plants.

Since only a few centimetres of the top layer of soil supports plant growth, turning and loosening of soil brings the nutrient-rich soil to the top so that plants can use these nutrients. Thus,

turning and loosening of soil is very important for cultivation of crops.

The process of loosening and turning of the soil is called **tilling** or **ploughing**. This is done by using a plough. Ploughs are made of wood or iron. If the soil is very dry, it may need watering before ploughing. The ploughed field may have big clumps of soil called crumbs. It is necessary to break these crumbs. Levelling the field is beneficial for sowing as well as for irrigation. Levelling of soil is done with the help of a leveller.

Sometimes, manure is added to the soil before tilling. This helps in proper mixing of manure with soil. The soil is moistened before sowing.

Agricultural Implements

Before sowing the seeds, it is necessary to break soil clumps to get better yield. This is done with the help of various tools. The main tools used for this purpose are the plough, hoe and cultivator.

Plough : This is being used since ancient times for tilling the soil, adding fertilisers to the crop, removing the weeds and turning the soil. This is made of wood and is drawn by a pair of bulls or other animals (horses and camels). It contains a strong triangular iron strip called ploughshare. The main part of the plough is a long log of wood which is called a ploughshaft. There is a handle at one end of the shaft. The other end is attached to a beam which is placed on the bulls' necks. One pair of bulls and a man can easily operate the plough [Fig. 1.1 (a)].

The indigenous wooden plough is increasingly being replaced by iron ploughs nowadays.

Hoe : It is a simple tool which is used for removing weeds and for loosening the soil. It has a long rod of wood or iron. A strong, broad and bent plate of iron is fixed to one of its ends and

Fig. 1.1 (a) : The plough

works like a blade. It is pulled by animals [Fig. 1.1 (b)].

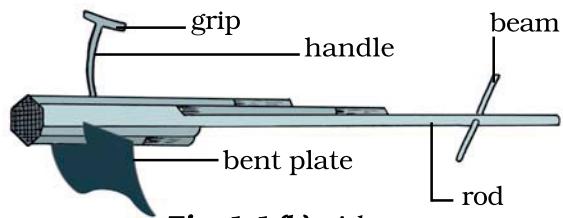


Fig. 1.1 (b) : A hoe

Cultivator : Nowadays ploughing is done by tractor-driven cultivator. The use of cultivator saves labour and time. [Fig. 1.1 (c)].

Fig. 1.1 (c) : Cultivator driven by a tractor

1.4 Sowing

Sowing is an important part of crop production. Before sowing, good quality, clean and healthy seeds of a good variety—are selected. Farmers prefer to use seeds which give high yield.

Selection of Seeds

One day I saw my mother put some gram seeds in a vessel and pour some water on them. After a few minutes some seeds started to float on top. I wonder why some seeds float on water!

Activity 1.1

Take a beaker and fill half of it with water. Put a handful of wheat seeds and stir well. Wait for some time.

Are there seeds which float on water? Would those be lighter or heavier than those which sink? Why would they be lighter? Damaged seeds become hollow and are thus lighter. Therefore, they float on water.

This is a good method for separating good, healthy seeds from the damaged ones.

Before sowing, one of the important tasks is to know about the tools used for sowing seeds [Fig. 1.2 (a), (b)].

Traditional tool : The tool used traditionally for sowing seeds is shaped like a funnel [Fig. 1.2 (a)]. The seeds are filled into the funnel, passed down through two or three pipes having sharp ends. These ends pierce into the soil and place seeds there.

Fig. 1.2 (a) : Traditional method of sowing

Fig. 1.2 (b) : A seed drill

Seed drill : Nowadays the seed drill [Fig. 1.2 (b)] is used for sowing with the help of tractors. This sows the seeds uniformly at equal distance and depth. It ensures that seeds get covered by the soil after sowing. This protects seeds from being eaten by birds. Sowing by using a seed drill saves time and labour.

There is a nursery near my school. I found that little plants were kept in small bags. Why are they kept like this?

Seeds of a few plants such as paddy are first grown in a nursery. When they grow into seedlings, they are transplanted to the field manually. Some forest plants and flowering plants are also grown in the nursery.

Appropriate distance between the seeds is necessary to avoid overcrowding of plants. This allows plants to get

sufficient sunlight, nutrients and water from the soil. At times a few plants may have to be removed to prevent overcrowding.

1.5 Adding Manure and Fertilisers

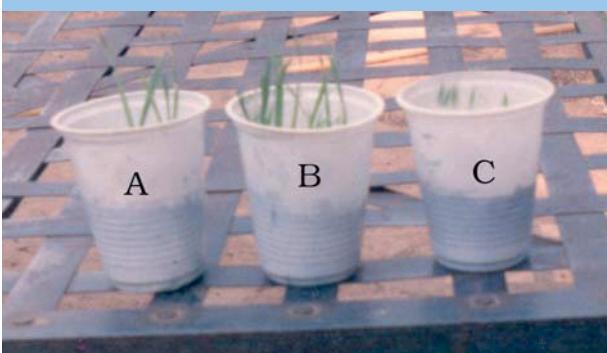
The substances which are added to the soil in the form of nutrients for the healthy growth of plants are called **manure** and **fertilisers**.

I saw a healthy crop growing in a farm. In the neighbouring farm, the plants were weak.

Why do some plants grow better than others?

Soil supplies mineral nutrients to the crop plants. These nutrients are essential for the growth of plants. In certain areas, farmers grow crop after crop in the same field. The field is never left uncultivated or fallow. Imagine what happens to the nutrients?

Continuous cultivation of crops makes the soil poor in nutrients. Therefore, farmers have to add manure to the fields to replenish the soil with nutrients. This process is called manuring. Improper or insufficient manuring results in weak plants.


Manure is an organic substance obtained from the decomposition of plant or animal wastes. Farmers dump plant and animal waste in pits at open places and allow it to decompose. The decomposition is caused by some microorganisms. The decomposed matter is used as organic manure. You have already learnt about vermicomposting in Class VI.

Activity 1.2

Take *moong* or gram seeds and germinate them. Select three equal sized seedlings. Take three empty glasses or similar vessels. Mark them A, B and C. To glass A add little amount of soil mixed with a little cow dung manure. In glass B put the same amount of soil mixed with a little urea. Take the same amount of soil in glass C without adding anything [Fig. 1.3(a)]. Now pour the same amount of water in each glass and plant the seedlings in them. Keep them in a safe place and water them daily. After 7 to 10 days observe their growth [Fig. 1.3(b)].

Fig. 1.3 (a) : Preparation of the experiment

Fig. 1.3 (b) : Growing seedlings with manure and fertiliser

Did plants in all the glasses grow at the same pace? Which glass showed

better growth of plants? In which glass was the growth fastest?

Fertilisers are chemicals which are rich in a particular nutrient. How are they different from manure? Fertilisers are produced in factories. Some examples of fertilisers are— urea, ammonium sulphate, super phosphate, potash, NPK (Nitrogen, Phosphorus, Potassium).

The use of fertilisers has helped farmers to get better yield of crops such as wheat, paddy and maize. But excessive use of fertilisers has made the soil less fertile. Fertilisers have also become a source of water pollution. Therefore, in order to maintain the fertility of the soil, we have to substitute fertilisers with organic manure or leave the field uncultivated (fallow) in between two crops.

The use of manure improves soil texture as well as its water retaining capacity. It replenishes the soil with nutrients.

Another method of replenishing the soil with nutrients is through **crop rotation**. This can be done by growing different crops alternately. Earlier, farmers in northern India used to grow legumes as fodder in one season and wheat in the next season. This helped in the replenishment of the soil with nitrogen. Farmers are being encouraged to adopt this practice.

In the previous classes, you have learnt about *Rhizobium* bacteria. These are present in the nodules of roots of leguminous plants. They fix atmospheric nitrogen.

Table 1.1 : Differences between Fertiliser and Manure

S. No.	Fertiliser	Manure
1.	Fertiliser is a man-made inorganic salt.	Manure is a natural substance obtained by the decomposition of cattle dung and plant residues.
2.	Fertiliser is prepared in factories.	Manure can be prepared in the fields.
3.	Fertiliser does not provide any humus to the soil.	Manure provides a lot of humus to the soil.
4.	Fertilisers are very rich in plant nutrients like nitrogen, phosphorus and potassium.	Manure is relatively less rich in plant nutrients.

Table 1.1 gives the differences between a fertiliser and manure.

Advantages of Manure : The organic manure is considered better than fertilisers. This is because

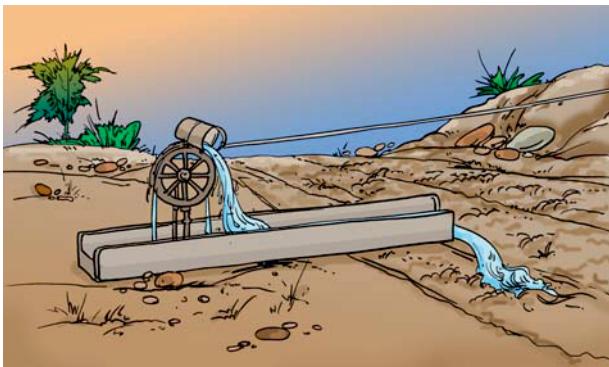
- it enhances the water holding capacity of the soil.
- it makes the soil porous due to which exchange of gases becomes easy.
- it increases the number of friendly microbes.
- it improves the texture of the soil.

1.6 Irrigation

All living beings need water to live. Water is important for proper growth and development. Water is absorbed by the plant roots. Along with water, minerals and fertilisers are also absorbed. Plants contain nearly 90% water. Water is essential because germination of seeds does not take place under dry conditions. Nutrients dissolved in water are transported to each part of the plant. Water also

protects the crop from both frost and hot air currents. To maintain the moisture of the soil for healthy crop growth, fields have to be watered regularly.

The supply of water to crops at regular intervals is called **irrigation**. The time and frequency of irrigation varies from crop to crop, soil to soil and season to season. In summer, the frequency of watering is higher. Why is it so? Could it be due to the increased rate of evaporation of water from the soil and the leaves?



I am very careful this year about watering the plants. Last summer my plants dried up and died.

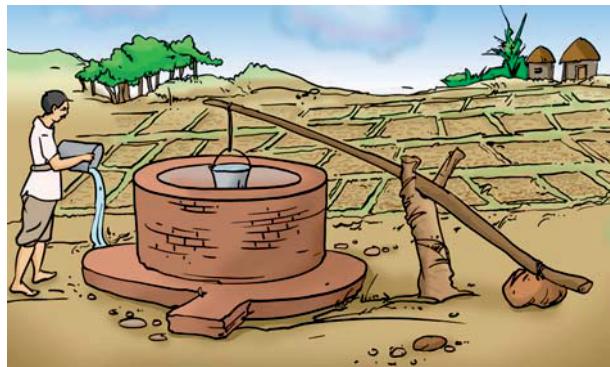

Sources of irrigation : The sources of water for irrigation are— wells, tubewells, ponds, lakes, rivers, dams and canals.

Fig. 1.4 (a) : Moat

Fig. 1.4 (b) : Chain pump

Fig. 1.4 (c) : Dhekli

Fig. 1.4 (d) : Rahat

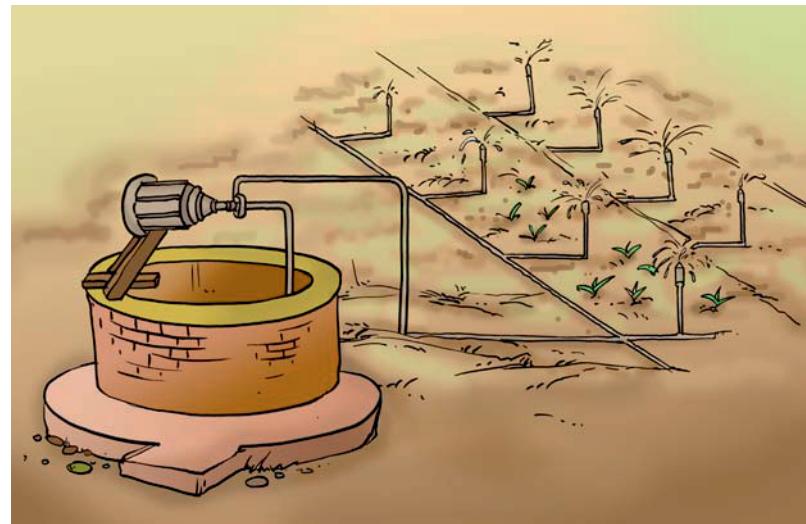
Traditional Methods of Irrigation

The water available in wells, lakes and canals is lifted up by different methods in different regions, for taking it to the fields.

Cattle or human labour is used in these methods. So these methods are cheaper, but less efficient. The various traditional ways are:

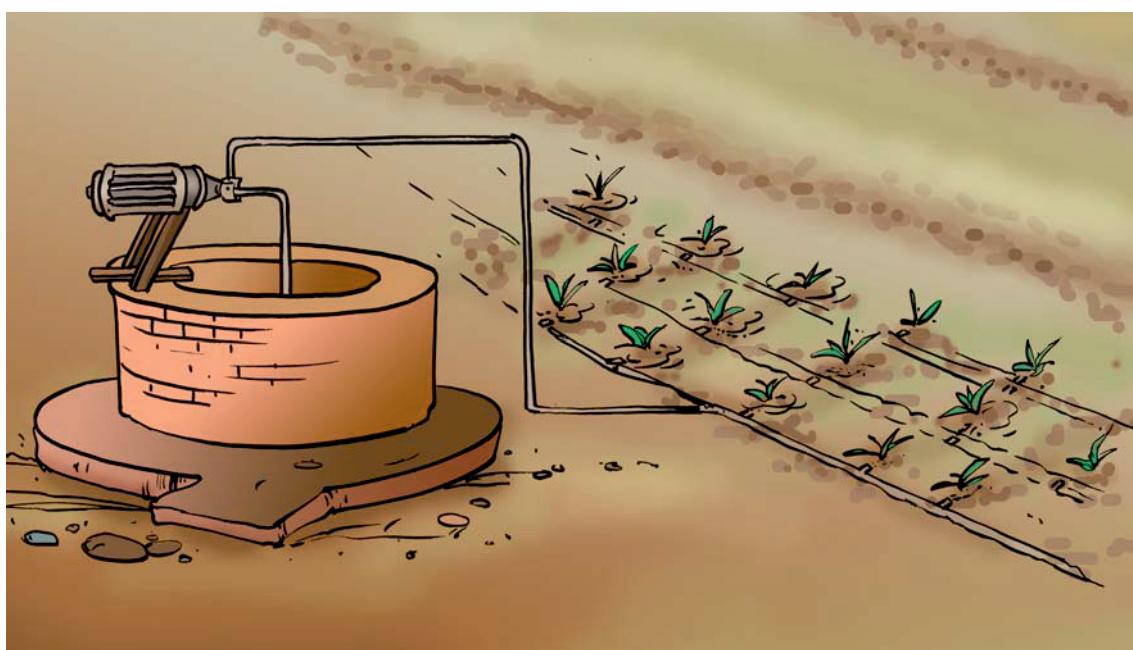
- (i) moat (pulley-system)
- (ii) chain pump

- (iii) dhekli, and
- (iv) rahat (Lever system)


[Figs. 1.4 (a)- (d)].

Pumps are commonly used for lifting water. Diesel, biogas, electricity and solar energy is used to run these pumps.

Modern Methods of Irrigation


Modern methods of irrigation help us to use water economically. The main methods used are as follows:

(i) Sprinkler System: This system is more useful on the uneven land where sufficient water is not available. The perpendicular pipes, having rotating nozzles on top, are joined to the main pipeline at regular intervals. When water is allowed to flow through the main pipe under pressure with the help of a pump, it escapes from the rotating nozzles. It gets sprinkled on the crop as if it is raining. Sprinkler is very useful for lawns, coffee plantation and several other crops [Fig. 1.5 (a)].

Fig. 1.5 (a) : Sprinkler system

(ii) Drip system : In this system, the water falls drop by drop directly near the roots. So it is called drip system. It is the best technique for watering fruit plants, gardens and trees [Fig. 1.5(b)]. Water is not wasted at all. It is a boon in regions where availability of water is poor.

Fig. 1.5 (b) : Drip System

1.7 Protection from Weeds

Boojho and Paheli went to a nearby wheat field and saw that there were some other plants in the field, growing along with wheat plants.

Have these other plants been planted purposely?

In a field many other undesirable plants may grow naturally along with the crop. These undesirable plants are called **weeds**.

The removal of weeds is called weeding. Weeding is necessary since weeds compete with the crop plants for water, nutrients, space and light. Thus, they affect the growth of the crop. Some weeds interfere even in harvesting and may be poisonous for animals and human beings.

Farmers adopt many ways to remove weeds and control their growth. Tilling before sowing of crops helps in uprooting and killing of weeds, which may then dry up and get mixed with the soil. The best time for the removal of weeds is before they produce flowers and seeds. The manual removal includes physical removal of weeds by uprooting or cutting them close to the ground, from time to time. This is done with the help of a *khurpi*. A seed drill [Fig. 1.2(b)] is also used to uproot weeds.

Weeds are also controlled by using certain chemicals, called **weedicides**, like 2,4-D. These are sprayed in the fields to kill the weeds. They do not damage the crops. The weedicides are diluted with water to the extent required and sprayed in the fields with a sprayer. (Fig. 1.6).

Fig. 1.6 : Spraying weedicide

Do weedicides have any effect on the person handling the weedicide sprayer?

As already mentioned, the weedicides are sprayed during the vegetative growth of weeds before flowering and seed formation. Spraying of weedicides may affect the health of farmers. So they should use these chemicals very carefully. They should cover their nose and mouth with a piece of cloth during spraying of these chemicals.

1.8 Harvesting

Harvesting of a crop is an important task. The cutting of crop after it is mature is called **harvesting**. In harvesting, crops are pulled out or cut close to the ground. It usually takes 3 to 4 months for a cereal crop to mature.

Harvesting in our country is either done manually by sickle (Fig. 1.7) or by a machine called harvester. In the harvested crop, the grain seeds need to be separated

Fig. 1.7 :
Sickle

from the chaff. This process is called **threshing**. This is carried out with the help of a machine called 'combine' which is in fact a harvester as well as a thresher (Fig. 1.8).

Fig. 1.8 : Combine

After harvesting, sometimes stubs are left in the field, which are burnt by farmers. Paheli is worried. She knows that it causes pollution. It may also catch fire and damage the crops lying in the fields.

Farmers with small holdings of land do the separation of grain and chaff by **winnowing** (Fig. 1.9). You have already studied this in Class VI.

Fig. 1.9 : Winnowing machine

Harvest Festivals

After three or four months of hard work there comes the day of the harvest. The sight of golden fields of standing crop, laden with grain, fills the hearts of farmers with joy and a sense of well-being. The efforts of the past season have borne fruit and it is time to relax and enjoy a little. The period of harvest is, thus, of great joy and happiness in all parts of India. Men and women celebrate it with great enthusiasm. Special festivals associated with the harvest season are Pongal, Baisakhi, Holi, Diwali, Nabanya and Bihu.

1.9 Storage

Storage of produce is an important task. If the harvested grains are to be kept for longer time, they should be safe from moisture, insects, rats and microorganisms. Harvested grains have more moisture. If freshly harvested grains (seeds) are stored without drying, they may get spoilt or attacked by organisms, making them unfit for use or for germination. Hence, before storing them, the grains are properly dried in the sun to reduce the moisture in them. This prevents the attack by insect pests, bacteria and fungi.

I saw my mother putting some dried neem leaves in an iron drum containing wheat. I wonder why?

Fig. 1.10 (a) : Silos for storage of grains

Fig. 1.10 (b) : Storage of grains in gunny bags in granaries

Farmers store grains in jute bags or metallic bins. However, large scale storage of grains is done in **silos** and **granaries** to protect them from pests like rats and insects [Fig. 1.10 (a) and (b)].

Dried neem leaves are used for storing food grains at home. For storing large quantities of grains in big godowns, specific chemical treatments are required to protect them from pests and microorganisms.

1.10 Food from Animals

Activity 1.3

Make the following Table in your note book and complete it.

S.No.	Food	Sources
1.	Milk	Cow, Buffalo, She-goat, She-camel . . .
2.		
3.		
4.		

After completing this Table, you must have seen that, like plants, animals also provide us with different kinds of food. Many people living in the coastal areas consume fish as a major part of their diet. In the previous classes you have learnt about the food that we obtain from plants. We have just seen that the process of crop production involves a number of steps like selection of seeds, sowing, etc. Similarly, animals reared at home or in farms, have to be provided with proper food, shelter and care. When this is done on a large scale, it is called **animal husbandry**.

Fish is good for health.
We get cod liver oil from fish
which is rich in vitamin D.

KEYWORDS

**AGRICULTURAL
PRACTICES**

ANIMAL HUSBANDRY

CROP

FERTILISER

GRANARIES

HARVESTING

IRRIGATION

KHARIF

MANURE

PLOUGH

RABI

SEEDS

SILO

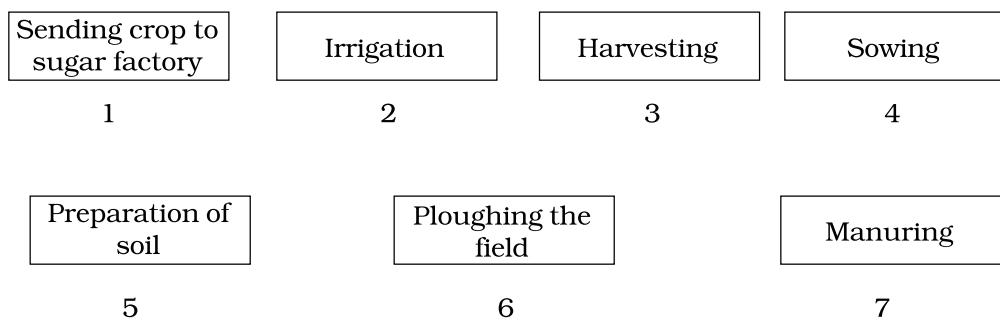
SOWING

STORAGE

THRESHING

WEEDS

WEEDICIDE

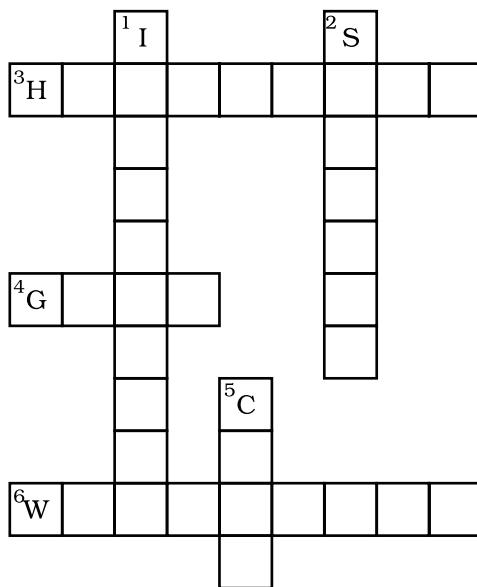

WINNOWING

WHAT YOU HAVE LEARNT

- ⇒ In order to provide food to our growing population, we need to adopt certain agricultural practices.
- ⇒ Same kind of plants cultivated at a place constitute a crop.
- ⇒ In India, crops can be broadly categorised into two types based on seasons - rabi and kharif crops.
- ⇒ It is necessary to prepare soil by tilling and levelling. Ploughs and levellers are used for this purpose.
- ⇒ Sowing of seeds at appropriate depths and distances gives good yield. Good variety of seeds are sown after selection of healthy seeds. Sowing is done by seed drills.
- ⇒ Soil needs replenishment and enrichment through the use of organic manure and fertilisers. Use of chemical fertilisers has increased tremendously with the introduction of new crop varieties.
- ⇒ Supply of water to crops at appropriate intervals is called irrigation.
- ⇒ Weeding involves removal of unwanted and uncultivated plants called weeds.
- ⇒ Harvesting is the cutting of the mature crop manually or by machines.
- ⇒ Separation of the grains from the chaff is called threshing.
- ⇒ Proper storage of grains is necessary to protect them from pests and microorganisms.
- ⇒ Food is also obtained from animals for which animals are reared. This is called animal husbandry.

Exercises

1. Select the correct word from the following list and fill in the blanks.
float, water, crop, nutrients, preparation
 - (a) The same kind of plants grown and cultivated on a large scale at a place is called _____.
 - (b) The first step before growing crops is _____ of the soil.


11. Complete the following word puzzle with the help of clues given below.

Down

1. Providing water to the crops.
2. Keeping crop grains for a long time under proper conditions.
5. Certain plants of the same kind grown on a large scale.

Across

3. A machine used for cutting the matured crop.
4. A *rabi* crop that is also one of the pulses.
6. A process of separating the grain from chaff.

Extended Learning — Activities and Projects

1. Sow some seeds in the soil and arrange to water them by drip irrigation. Observe daily.
 - (i) Do you think it can save water?
 - (ii) Note the changes in the seed.
2. Collect different types of seeds and put them in small bags. Label them.
3. Collect pictures of some other agricultural machines and paste them in a file. Write their names and uses.
4. Project Work
Visit a farm, nursery or a garden nearby. Gather information about
 - (i) importance of seed selection.
 - (ii) method of irrigation.

- (iii) effect of extreme cold and extreme hot weather on the plants.
- (iv) effect of continuous rain on the plants.
- (v) fertilisers/manure used.

An Example for Field Trip Work

Himanshu and his friends were very anxious and curious to go to Thikri village. They went to Shri Jiwan Patel's farmhouse. They had taken bags to collect some seeds and other things.

Himanshu : Sir *namaskar*, I am Himanshu. Here are my friends Mohan, David and Sabiha. We want some information about crops. Please guide us.

Shri Patel : *Namaskar* and welcome all of you. What are your queries?

Sabiha : When did you start this work and what are the main crops that you grow?

Shri Patel : About 75 years ago, my grandfather started this work. The main crops that we grow are wheat, gram, soyabean and *moong*.

David : Sir, can you tell us the difference between traditional and modern agricultural practices?

Shri Patel : Earlier we used traditional tools like sickle, bullock plough, trowel, etc., and depended on rain water for irrigation. But now we use modern methods of irrigation. We use implements like tractors, cultivators, seed drill and harvester. We get good quality seeds. We carry out soil testing and use manure and fertilisers. New information about agriculture is obtained through radio, T.V. and other sources. As a result we are able to get good crops on a large scale. This year we got 9 to 11 quintals of gram crop/acre and 20 to 25 quintals of wheat/acre. In my opinion awareness of new technology is important for better crop yield.

Mohan : Sabiha, come here and see some earthworms. Are they helpful to the farmers?

Sabiha : Oh Mohan! we learnt about it in Class VI.

Shri Patel : Earthworms turn the soil and loosen it for proper aeration, so they help the farmer.

David : Can we have some seeds of the crops you grow here?

[They put some seeds, fertilisers and soil sample in the bags.]

Himanshu : Sir, we are thankful to you for making this visit pleasant and for providing useful information.

You have seen several kinds of plants and animals. However, there are other living organisms around us which we normally cannot see. These are called **microorganisms** or **microbes**. For example, you might have observed that during the rainy season moist bread gets spoilt and its surface gets covered with greyish white patches. Observe these patches through a magnifying glass. You will see tiny, black rounded structures. Do you know what these structures are and where do these come from?

2.1 Microorganisms

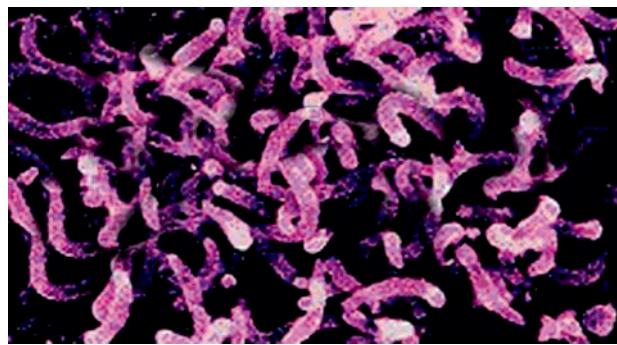
Activity 2.1

Collect some moist soil from the field in a beaker and add water to it. After the soil particles have settled down, observe a drop of water from the beaker under a microscope. What do you see ?

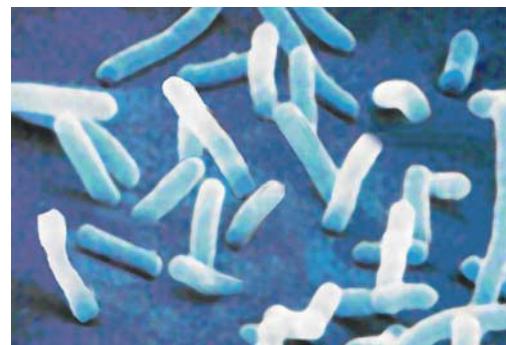
Activity 2.2

Take a few drops of water from a pond. Spread on a glass slide and observe through a microscope.

Do you find tiny organisms moving around?

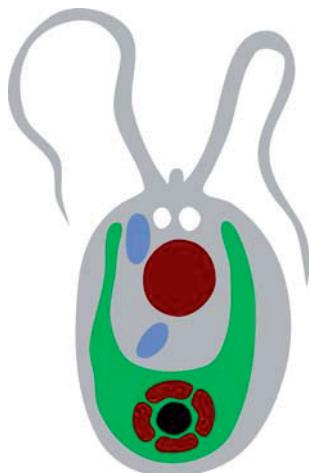

These observations show that water and soil are full of tiny organisms, though not all of them fall into the category of microbes. These microorganisms or microbes are so small in size that they cannot be seen with the unaided eye. Some of these, such as the fungus that grows on bread, can be seen with a magnifying glass. Others cannot be seen without the help of a microscope. That is why these are called microorganisms or microbes.

Microorganisms are classified into four major groups. These groups are **bacteria**, **fungi**, **protozoa** and some **algae**. Some of these common microorganisms are shown in Figs. 2.1 - 2.4.


Viruses are also microscopic but are different from other microorganisms. They, however, reproduce only inside the cells of the host organism, which may be a bacterium, plant or animal. Some of the viruses are shown in Fig. 2.5. Common ailments like cold, influenza (flu) and most coughs are caused by viruses. Serious diseases like polio and chicken pox are also caused by viruses.

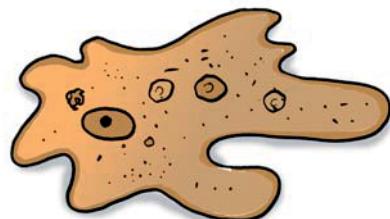
Diseases like dysentery and malaria are caused by protozoa(protozoans) whereas typhoid and tuberculosis (TB) are bacterial diseases.

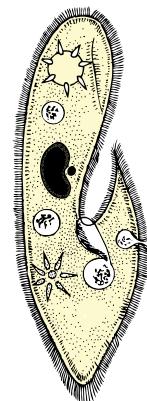
You have learnt about some of these microorganisms in Classes VI and VII.



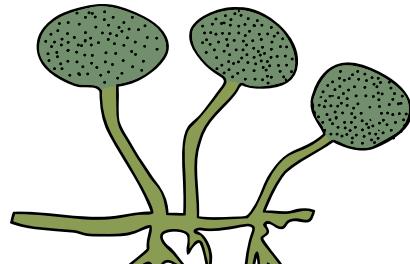
Spiral Bacteria

Rod Shaped Bacteria


Fig. 2.1: Bacteria


Chlamydomonas

Spirogyra


Amoeba

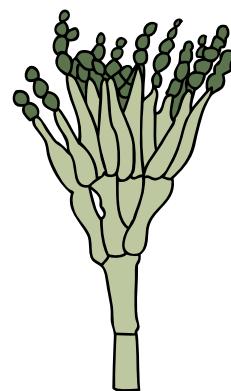
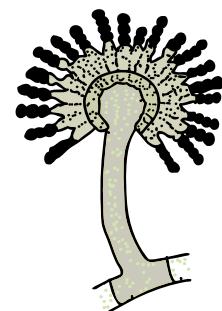
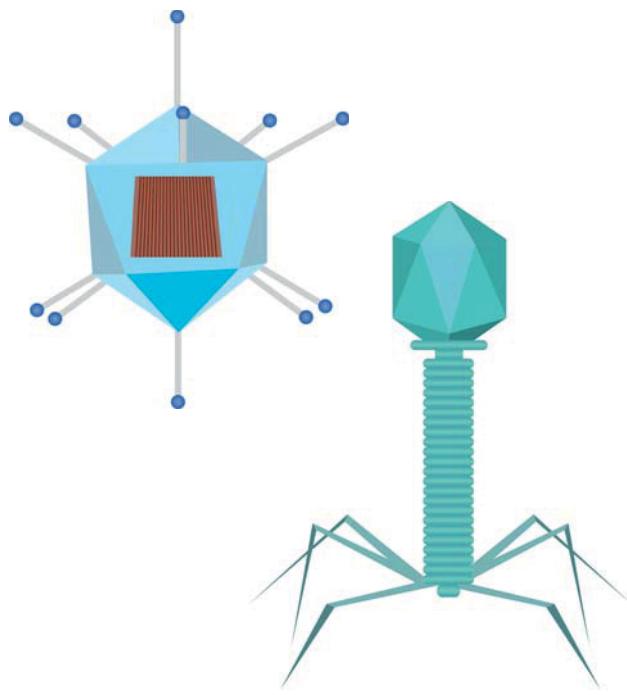

Paramecium

Fig. 2.2 : Algae


Fig. 2.3 : Protozoa

Bread mould



Penicillium

Aspergillus

Fig. 2.4 : Fungi

Fig. 2.5 : Viruses

2.2 Where do Microorganisms Live?

Microorganisms may be single-celled like bacteria, some algae and protozoa, or multicellular, such as many algae and fungi. They live in all types of environment, ranging from ice cold climate to hot springs; and deserts to marshy lands. They are also found inside the bodies of animals including humans. Some microorganisms grow on other organisms while others exist freely.

2.3 Microorganisms and Us

Microorganisms play an important role in our lives. Some of them are beneficial in many ways whereas some others are harmful and cause diseases. Let us study about them in detail.

Friendly Microorganisms

Microorganisms are used for various purposes. They are used in the preparation of curd, bread and cake.

Microorganisms have been used for the production of alcohol since ages.

They are also used in cleaning up of the environment. For example, the organic wastes (vegetable peels, remains of animals, faeces, etc.) are broken down into harmless and usable substances by bacteria. Recall that bacteria are also used in the preparation of medicines. In agriculture they are used to increase **soil fertility** by fixing nitrogen.

Making of Curd and Bread

You have learnt in Class VII that milk is turned into curd by bacteria.

I saw that my mother added a little curd to warm milk to set curd for the next day. I wonder why?

Curd contains several micro-organisms. Of these, the bacterium, *Lactobacillus* promotes the formation of curd. It multiplies in milk and converts it into curd. Bacteria are also involved in the making of cheese, pickles and many other food items. An important ingredient of *rava (sooji) idlis* and *bhaturas* is curd. Can you guess why? Bacteria and yeast are also helpful for fermentation of rice idlis and dosa batter.

Activity 2.3

Take $\frac{1}{2}$ kg flour (*atta* or *maida*), add some sugar and mix with warm water. Add a small amount of yeast powder and knead to make a soft dough. What do you observe after two hours? Did you find the dough rising?

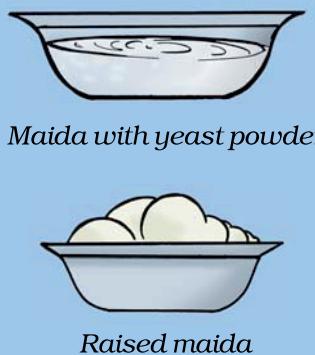


Fig. 2.6

Yeast reproduces rapidly and produces carbon dioxide during respiration. Bubbles of the gas fill the dough and increase its volume (Fig. 2.6). This is the basis of the use of yeast in the baking industry for making breads, pastries and cakes.

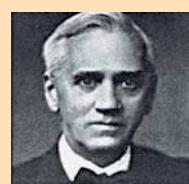
Commercial Use of Microorganisms


Microorganisms are used for the large scale production of alcohol, wine and acetic acid (vinegar). Yeast is used for commercial production of alcohol and wine. For this purpose yeast is grown on natural sugars present in grains like barley, wheat, rice, crushed fruit juices, etc.

Activity 2.4

Take a 500 mL beaker filled upto $\frac{3}{4}$ with water. Dissolve 2-3 teaspoons of sugar in it. Add half a

spoon of yeast powder to the sugar solution. Keep it covered in a warm place for 4-5 hours. Now smell the solution. Can you get a smell?


This is the smell of alcohol as sugar has been converted into alcohol by yeast. This process of conversion of sugar into alcohol is known as **fermentation**.

Louis Pasteur
discovered
fermentation
in 1857.

Medicinal Use of Microorganisms

Whenever you fall ill the doctor may give you some antibiotic tablets, capsules or injections such as of penicillin. The source of these medicines is microorganisms. These medicines kill or stop the growth of the disease-causing microorganisms. Such medicines are called **antibiotics**. These days a number of antibiotics are being produced from bacteria and fungi. Streptomycin, tetracycline and erythromycin are some of the

In 1929, Alexander Fleming was working on a culture of disease-causing bacteria. Suddenly he found the spores of a little green mould in one of his culture plates. He observed that the presence of mould prevented the growth of bacteria. In fact, it also killed many of these bacteria. From this the mould penicillin was prepared.

commonly known antibiotics which are made from fungi and bacteria. The antibiotics are manufactured by growing specific microorganisms and are used to cure a variety of diseases.

Antibiotics are even mixed with the feed of livestock and poultry to check microbial infection in animals. They are also used to control many plant diseases.

It is important to remember that antibiotics should be taken only on the advice of a qualified doctor. Also you must complete the course prescribed by the doctor. If you take antibiotics when not needed or in wrong doses, it may make the drug less effective when you might need it in future. Also antibiotics taken unnecessarily may kill the beneficial bacteria in the body. Antibiotics, however, are not effective against cold and flu as these are caused by viruses.

Vaccine

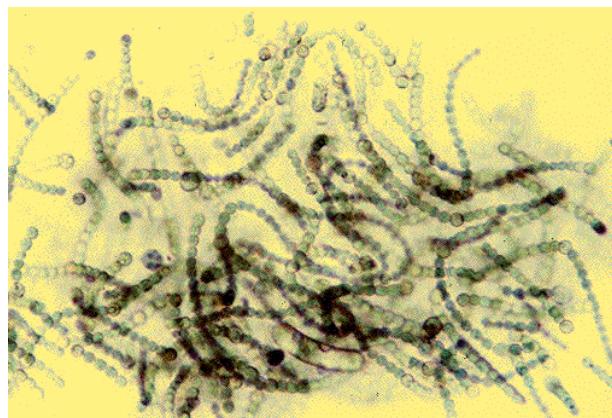
Why are children/infants given vaccination?

When a disease-carrying microbe enters our body, the body produces **antibodies** to fight the invader. The body also remembers how to fight the microbe if it enters again. If dead or weakened microbes are introduced into a healthy body, the body fights and kills the invading bacteria by producing suitable antibodies. The antibodies remain in the body and we are protected

from the disease-causing microbes for ever. This is how a vaccine works. Several diseases, including cholera, tuberculosis, smallpox and hepatitis can be prevented by vaccination.

Edward Jenner discovered the vaccine for smallpox in 1798.

In your childhood, you must have been given injections to protect yourself against several diseases. Can you prepare a list of these diseases? You may take help from your parents.


It is essential to protect all children against these diseases. Necessary vaccines are available in the nearby hospitals. You might have seen the advertisement on TV and newspapers regarding protection of children against polio under the Pulse Polio Programme. Polio drops given to children are actually a vaccine.

A worldwide campaign against smallpox has finally led to its eradication from most parts of the world.

These days vaccines are made on a large scale from microorganisms to protect humans and other animals from several diseases.

Increasing Soil Fertility

Some bacteria (Fig. 2.7) are able to fix nitrogen from the atmosphere to enrich soil with nitrogen and increase its fertility. These microbes are commonly called biological nitrogen fixers.

Fig. 2.7 : The Nitrogen fixing cyanobacteria (blue green algae)

Cleaning the Environment

Boojho and Paheli had observed the school gardener making manure. Along with their friends, they collected wastes of plants, vegetables and fruits from nearby houses and gardens. They put them in a pit meant for waste disposal. After some time, it decomposed and got converted to manure. Boojho and Paheli wanted to know how this had happened.

Activity 2.5

Take two pots and fill each pot half with soil. Mark them A and B. Put plant waste in pot A and things like polythene bags, empty glass bottles and broken plastic toys in pot B. Put the pots aside. Observe them after 3-4 weeks.

Do you find any difference in the contents of the two pots? If so, what is the difference? You will find that plant waste in pot A, has been decomposed. How did this happen? The plant waste has been converted into manure by the action of microbes. The nutrients

released in the process can be used by the plants again.

Did you notice that in pot B, the polythene bags, empty glasses, bottles and broken toy parts did not undergo any such change? The microbes could not 'act' on them and convert them into manure.

You often see large amounts of dead organic matter in the form of decaying plants and sometimes dead animals on the ground. You find that they disappear after some time. This is because the microorganisms decompose dead organic waste of plants and animals converting them into simple substances. These substances are again used by other plants and animals. Thus, microorganisms can be used to degrade the harmful and smelly substances and thereby clean up the environment.

2.4 Harmful Microorganisms

Microorganisms are harmful in many ways. Some of the microorganisms cause diseases in human beings, plants and animals. Such disease-causing

microorganisms are called **pathogens**. Some microorganisms spoil food, clothing and leather. Let us study more about their harmful activities.

Disease causing Microorganisms in Humans

Pathogens enter our body through the air we breathe, the water we drink or the food we eat. They can also get transmitted by direct contact with an infected person or carried by an animal. Microbial diseases that can spread from an infected person to a healthy person through air, water, food or physical contact are called **communicable diseases**. Examples of such diseases include cholera, common cold, chicken pox and tuberculosis.

When a person suffering from common cold sneezes, fine droplets of moisture carrying thousands of viruses are spread in the air. The virus may enter the body of a healthy person while breathing and cause infection.

Then how do you prevent the spread of communicable diseases?

We should keep a handkerchief on the nose and mouth while sneezing. It is better to keep a distance from infected persons.

There are some insects and animals which act as **carriers** of disease-causing microbes. Housefly is one such carrier. The flies sit on the garbage and animal excreta. Pathogens stick to their bodies. When these flies sit on uncovered food they may transfer the pathogens. Whoever eats the contaminated food is likely to get sick. So, it is advisable to always keep food covered. Avoid consuming uncovered items of food. Another example of a carrier is the female *Anopheles* mosquito (Fig. 2.8), which carries the parasite of malaria (Plasmodium). Female *Aedes* mosquito acts as carrier of dengue virus. How can we control the spread of malaria or dengue?

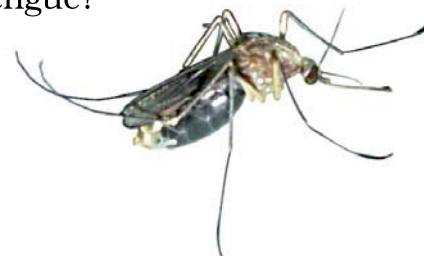


Fig. 2.8 : Female *Anopheles* mosquito

Why does the teacher keep telling us not to let water collect anywhere in the neighbourhood?

All mosquitoes breed in water. Hence, one should not let water collect anywhere, in coolers, tyres, flower pot, etc. By keeping the surroundings clean and dry we can prevent mosquitoes from breeding. Try to make a list of measures which help to avoid the spread of malaria.

Table 2.1: Some Common Human Diseases caused by Microorganisms

Human Disease	Causative Microorganism	Mode of Transmission	Preventive Measures (General)
Tuberculosis	Bacteria	Air	Keep the patient in complete isolation. Keep the personal belongings of the patient away from those of the others. Vaccination to be given at suitable age.
Measles	Virus	Air	
Chicken Pox	Virus	Air/Contact	
Polio	Virus	Air/Water	
Cholera	Bacteria	Water/Food	Maintain personal hygiene and good sanitary habits. Consume properly cooked food and boiled drinking water. Vaccination.
Typhoid	Bacteria	Water	
Hepatitis A	Virus	Water	Drink boiled drinking water. Vaccination.
Malaria	Protozoa	Mosquito	Use mosquito net and repellents. Spray insecticides and control breeding of mosquitoes by not allowing water to collect in the surroundings.

Some of the common diseases affecting humans, their mode of transmission and few general methods of prevention are shown in Table 2.1.

Disease causing Microorganisms in Animals

Several microorganisms not only cause diseases in humans and plants, but also

Robert Koch (1876) discovered the bacterium (*Bacillus anthracis*) which causes anthrax disease.

in other animals. For example, anthrax is a dangerous human and cattle disease caused by a bacterium. Foot and mouth disease of cattle is caused by a virus.

Disease causing Microorganisms in Plants

Several microorganisms cause diseases in plants like wheat, rice, potato, sugarcane, orange, apple and others. The diseases reduce the yield of crops. See Table 2.2 for some such plant diseases. They can be controlled by the

Table 2.2: Some Common Plant Diseases caused by Microorganisms

Plant Diseases	Micro-organism	Mode of Transmission
Citrus canker	Bacteria	Air
Rust of wheat	Fungi	Air, seeds
Yellow vein mosaic of <i>bhindi</i> (Okra)	Virus	Insect

use of certain chemicals which kill the microbes.

Food Poisoning

Bojho was invited by his friend to a party and he ate a variety of foodstuff. On reaching home he started vomiting and had to be taken to a hospital. The doctor said that this condition could be due to food poisoning.

Paheli wonders how food can become a 'poison'.

Food poisoning could be due to the consumption of food spoilt by some microorganisms. Microorganisms that grow on our food sometimes produce toxic substances. These

make the food poisonous causing serious illness and even death. So, it is very important that we preserve food to prevent it from being spoilt.

2.5 Food Preservation

In Chapter 1, we have learnt about the methods used to preserve and store food grains. How do we preserve cooked food at home? You know that bread left unused under moist conditions is attacked by fungus. Microorganisms spoil our food. Spoiled food emits bad smell and has a bad taste and changed colour. Is spoiling of food a chemical reaction?

Paheli bought some mangoes but she could not eat them for a few days. Later she found that they were spoilt and rotten. But she knows that the mango pickle her grandmother makes does not spoil for a long time. She is confused.

Let us study the common methods of preserving food in our homes. We have to save it from the attack of microorganisms.

Chemical Method

Salts and edible oils are the common chemicals generally used to check the growth of microorganisms. Therefore they are called **preservatives**. We add salt or acid preservatives to pickles to prevent the attack of microbes. Sodium benzoate and sodium metabisulphite are common preservatives. These are also used in jams and squashes to check their spoilage.

Preservation by Common Salt

Common salt has been used to preserve meat and fish for ages. Meat and fish are covered with dry salt to check the growth of bacteria. Salting is also used to preserve *amla*, raw mangoes, tamarind, etc.

Preservation by Sugar

Jams, jellies and squashes are preserved by sugar. Sugar reduces the moisture content which inhibits the growth of bacteria which spoil food.

Preservation by Oil and Vinegar

Use of oil and vinegar prevents spoilage of pickles because bacteria cannot live in such an environment. Vegetables, fruits, fish and meat are often preserved by this method.

Heat and Cold Treatments

You must have observed your mother boiling milk before it is stored or used. Boiling kills many microorganisms.

Similarly, we keep our food in the refrigerator. Low temperature inhibits the growth of microbes.

Why does the milk that comes in packets not spoil? My mother told me that the milk is 'pasteurised'. What is pasteurisation?

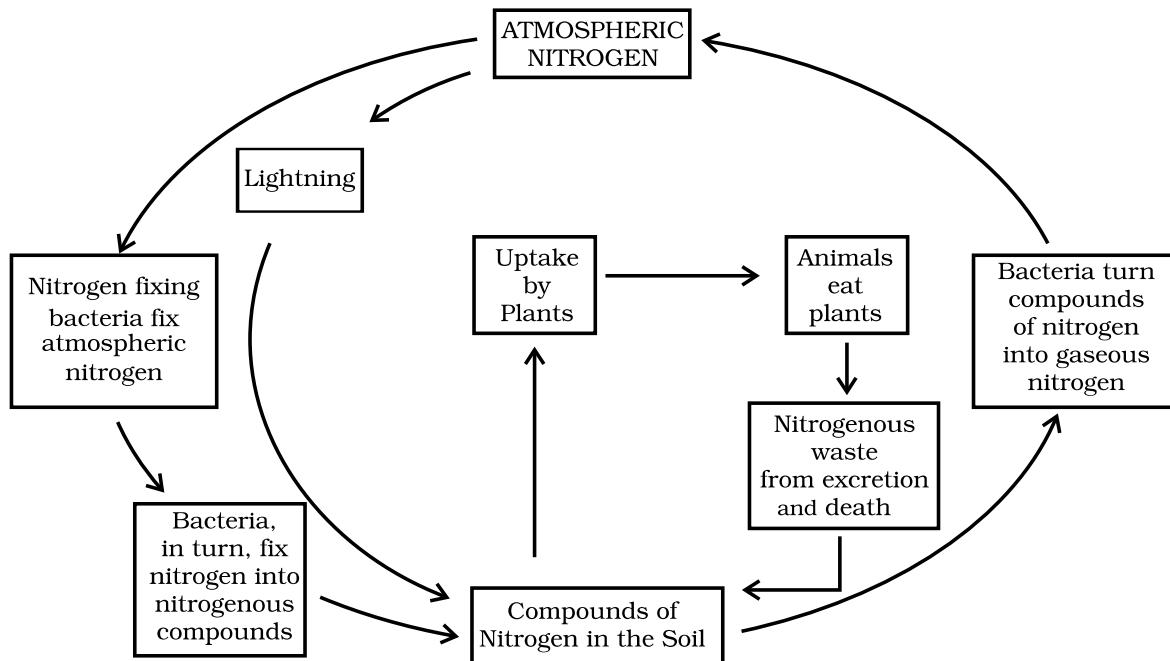
Pasteurised milk can be consumed without boiling as it is free from harmful microbes. The milk is heated to about 70°C for 15 to 30 seconds and then suddenly chilled and stored. By doing so, it prevents the growth of microbes. This process was discovered by Louis Pasteur. It is called **pasteurisation**.

Storage and Packing

These days dry fruits and even vegetables are sold in sealed air tight packets to prevent the attack of microbes.

2.6 Nitrogen Fixation

You have learnt about the bacterium *Rhizobium* in Classes VI and VII. It is involved in the fixation of nitrogen in leguminous plants (pulses). Recall that *Rhizobium* lives in the root nodules of leguminous plants (Fig. 2.9), such as beans and peas, with which it has a symbiotic relationship. Sometimes nitrogen gets fixed through the action of lightning. But you know that the amount of nitrogen in the atmosphere remains constant. You may wonder how? Let us understand this in the next section.


Fig. 2.9 : Roots of a leguminous plant with root nodules

2.7 Nitrogen cycle

Our atmosphere has 78% nitrogen gas. Nitrogen is one of the essential constituents of all living organisms as part of proteins, chlorophyll, nucleic acids and vitamins. The atmospheric

nitrogen cannot be taken directly by plants and animals. Certain bacteria and blue green algae present in the soil fix nitrogen from the atmosphere and convert it into compounds of nitrogen. Once nitrogen is converted into these usable compounds, it can be utilised by plants from the soil through their root system. Nitrogen is then used for the synthesis of plant proteins and other compounds. Animals feeding on plants get these proteins and other nitrogen compounds (Fig. 2.10).

When plants and animals die, bacteria and fungi present in the soil convert the nitrogenous wastes into nitrogenous compounds to be used by plants again. Certain other bacteria convert some part of them to nitrogen gas which goes back into the atmosphere. As a result, the percentage of nitrogen in the atmosphere remains more or less constant.

Fig. 2.10 : Nitrogen cycle

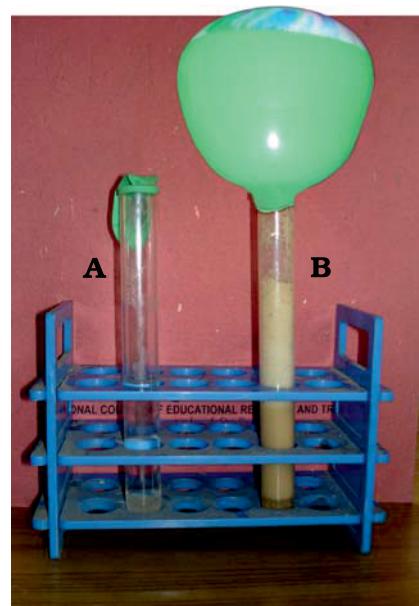
KEYWORDS**ALGAE****ANTIBIOTICS****ANTIBODIES****BACTERIA****CARRIER****COMMUNICABLE
DISEASES****FERMENTATION****FUNGI****LACTOBACILLUS****MICROORGANISM****NITROGEN CYCLE****NITROGEN FIXATION****PASTEURISATION****PATHOGEN****PRESERVATION****PROTOZOA****RHIZOBIUM****VACCINE****VIRUS****YEAST****WHAT YOU HAVE LEARNT**

- ⇒ Microorganisms are too small and are not visible to the unaided eye.
- ⇒ They can live in all kinds of environment, ranging from ice cold climate to hot springs and deserts to marshy lands.
- ⇒ Microorganisms are found in air, water and in the bodies of plants and animals.
- ⇒ They may be unicellular or multicellular.
- ⇒ Microorganisms include bacteria, fungi, protozoa and some algae. Viruses, though different from the above mentioned living organisms, are considered microbes.
- ⇒ Viruses are quite different from other microorganisms. They reproduce only inside the host organism: bacterium, plant or animal cell.
- ⇒ Some microorganisms are useful for commercial production of medicines and alcohol.
- ⇒ Some microorganisms decompose the organic waste and dead plants and animals into simple substances and clean up the environment.
- ⇒ Protozoans cause serious diseases like dysentery and malaria.
- ⇒ Some of the microorganisms grow on our food and cause food poisoning.
- ⇒ Some microorganisms reside in the root nodules of leguminous plants. They can fix nitrogen from air into soil and increase the soil fertility.
- ⇒ Some bacteria present in the soil fix nitrogen from the atmosphere and convert into nitrogenous compounds.
- ⇒ Certain bacteria convert compounds of nitrogen present in the soil into nitrogen gas which is released to the atmosphere.

Exercises

1. Fill in the blanks.
 - (a) Microorganisms can be seen with the help of a _____.
 - (b) Blue green algae fix _____ directly from air and enhance fertility of soil.
 - (c) Alcohol is produced with the help of _____.
 - (d) Cholera is caused by _____.
2. Tick the correct answer.
 - (a) Yeast is used in the production of
 - (i) sugar
 - (ii) alcohol
 - (iii) hydrochloric acid
 - (iv) oxygen
 - (b) The following is an antibiotic
 - (i) Sodium bicarbonate
 - (ii) Streptomycin
 - (iii) Alcohol
 - (iv) Yeast
 - (c) Carrier of malaria-causing protozoan is
 - (i) female *Anopheles* mosquito
 - (ii) cockroach
 - (iii) housefly
 - (iv) butterfly
 - (d) The most common carrier of communicable diseases is
 - (i) ant
 - (ii) housefly
 - (iii) dragonfly
 - (iv) spider
 - (e) The bread or *idli* dough rises because of
 - (i) heat
 - (ii) grinding
 - (iii) growth of yeast cells
 - (iv) kneading
 - (f) The process of conversion of sugar into alcohol is called
 - (i) nitrogen fixation
 - (ii) moulding
 - (iii) fermentation
 - (iv) infection
3. Match the organisms in Column **A** with their action in Column **B**.

A	B
(i) Bacteria	(a) Fixing nitrogen
(ii) <i>Rhizobium</i>	(b) Setting of curd
(iii) <i>Lactobacillus</i>	(c) Baking of bread
(iv) Yeast	(d) Causing malaria
(v) A protozoan	(e) Causing cholera
(vi) A virus	(f) Causing AIDS
	(g) Producing antibodies
4. Can microorganisms be seen with the naked eye? If not, how can they be seen?


- What are the major groups of microorganisms?
- Name the microorganisms which can fix atmospheric nitrogen in the soil.
- Write 10 lines on the usefulness of microorganisms in our lives.
- Write a short paragraph on the harmful effects of microorganisms.
- What are antibiotics? What precautions must be taken while taking antibiotics?

Extended Learning — Activities and Projects

- Pull out a gram or bean plant from the field. Observe its roots. You will find round structures called root nodules on the roots. Draw a diagram of the root and show the root nodules.
- Collect the labels from the bottles of jams and jellies. Write down the list of contents printed on the labels.
- Visit a doctor. Find out why antibiotics should not be overused. Prepare a short report.
- Project : Requirements – 2 test tubes, marker pen, sugar, yeast powder, 2 balloons and lime water.

Take two test tubes and mark them A and B. Clamp these tubes in a stand and fill them with water leaving some space at the top. Put two spoonfuls of sugar in each of the test tubes. Add a spoonful of yeast in test tube B. Inflate the two balloons incompletely. Now tie the balloons on the mouths of each test tube. Keep them in a warm place, away from sunlight. Watch the setup every day for next 3-4 days. Record your observations and think of an explanation.

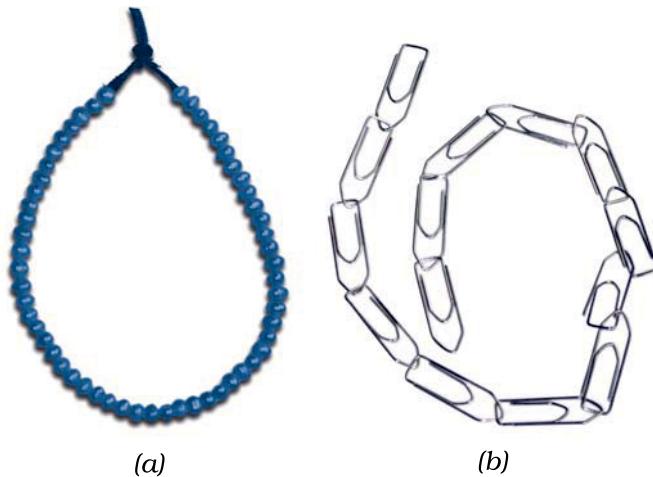
Now take another test tube filled 1/4 with lime water. Remove the balloon from test tube B in such a manner that gas inside the balloon does not escape. Fit the balloon on the test tube and shake well. Observe and explain.

Did You Know?

Bacteria have lived on the earth for much longer than human beings. They are such hardy organisms that they can live under extreme conditions. They have been found living in boiling mudpots and extremely cold icy waters. They have been found in lakes of caustic soda and in pools of concentrated sulphuric acid. They can survive at depths of several kilometres. They probably can survive in space, too. A kind of bacterium was recovered from a camera which stood on the moon for two years. There is probably no environment in which bacteria cannot survive.

The clothes which we wear are made of fabrics. Fabrics are made from fibres obtained from natural or artificial sources. Can you name some natural fibres? Fibres are also used for making a large variety of household articles. Make a list of some common articles made from fibres. Try to separate them into those made from natural fibres and those made from artificial fibres. Make entries in Table 3.1.

Table 3.1 : Natural and Artificial Fibres


S. No.	Name of Article	Type of Fibre (Natural/ artificial)

Why did you label some fibres as artificial?

You have read in your previous classes that natural fibres like cotton, wool, silk, etc., are obtained from plants or animals. The synthetic fibres, on the other hand, are made by human beings. That is why these are called **synthetic** or **man-made** fibres.

3.1 What are Synthetic Fibres?

Try to recall the uniform pattern found in a necklace of beads joined with the help of a thread [Fig. 3.1(a)]. Or, try to join a number of paper clips together to make a long chain, as in Fig. 3.1 (b). Is there any similarity between the two?

Fig. 3.1 : (a) Beads and (b) Paper clips joined to form long chains

A synthetic fibre is also a chain of small units joined together. Each small unit is actually a chemical substance. Many such small units combine to form a large single unit called a **polymer**. The word 'polymer' comes from two Greek words; *poly* meaning *many* and *mer* meaning *part/unit*. So, a polymer is made of many repeating units.

Polymers occur in nature also. Cotton, for example, is a polymer called **cellulose**. Cellulose is made up of a large number of glucose units.

3.2 Types of Synthetic Fibres

Rayon

You have read in Class VII that silk fibre obtained from silkworm was discovered in China and was kept as a closely guarded secret for a long time. Fabric obtained from silk fibre was very costly. But its beautiful texture fascinated everybody. Attempts were made to make silk artificially. Towards the end of the nineteenth century, scientists were successful in obtaining a fibre having properties similar to that of silk. Such a fibre was obtained by chemical treatment of wood pulp. This fibre was called **rayon** or **artificial silk**. Although rayon is obtained from a natural source, wood pulp, yet it is a man-made fibre. It is cheaper than silk and can be woven like silk fibres. It can also be dyed in a wide variety of colours. Rayon is mixed with cotton to make bed sheets or mixed with wool to make carpets. (Fig. 3.2.)

Nylon

Nylon is another man-made fibre. In 1931, it was made without using any natural raw material (from plant or animal). It was prepared from coal, water and air. It was the first fully synthetic fibre.

Nylon fibre was strong, elastic and light. It was lustrous and easy to wash. So, it became very popular for making clothes.

We use many articles made from nylon, such as socks, ropes, tents, toothbrushes, car seat belts, sleeping bags, curtains, etc. (Fig. 3.3). Nylon is

Fig. 3.3: Various articles made from nylon

Fig. 3.2 : Articles made of rayon

Is nylon fibre really so strong that we can make nylon parachutes and ropes for rock climbing?

Fig. 3.4: Use of nylon Fibres

also used for making parachutes and ropes for rock climbing (Fig. 3.4). A nylon thread is actually stronger than a steel wire.

Let us find out.

Activity 3.1

Take an iron stand with a clamp. Take a cotton thread of about 60 cm length. Tie it to the clamp so that it hangs freely from it as shown in Fig. 3.5. At the free end suspend

Fig. 3.5: An iron stand with a thread hanging from the clamp

a pan so that weight can be placed in it. Add weight one by one till the thread breaks. Note down the total weight required to break the thread. This weight indicates the strength of the fibre. Repeat the same activity with threads of wool, polyester, silk and nylon. Tabulate the data as shown in Table 3.2. Arrange the threads in order of their increasing strength.

Observation Table 3.2

S. No.	Type of Thread/Fibre	Total Weight required to break the Thread
1.	Cotton	
2.	Wool	
3.	Silk	
4.	Nylon	

You may use a hook or a nail on the wall for hanging the fibres and a polythene bag at the other end. In place of weights you may use marbles (or pebbles) of similar size.

(Precaution : Note that all threads should be of the same length and almost of the same thickness.)

Polyester and Acrylic

Polyester is another synthetic fibre. Fabric made from this fibre does not get wrinkled easily. It remains crisp and is easy to wash. So, it is quite suitable for making dress material. You must have seen people wearing polyester shirts and other dresses. Terylene is a popular polyester. It can be drawn into very fine

fibres that can be woven like any other yarn.

My mother always buys PET bottles and PET jars for storing rice and sugar. I wonder what PET is!

PET (polyethylene terephthalate) is a very familiar form of polyester. It is used for making bottles, utensils, films, wires and many other useful products.

Look around and make a list of things made of polyester.

Polyester (Poly+ester) is actually made up of the repeating units of a chemical called an ester. Esters are the chemicals which give fruits their smell. Fabrics are sold by names like polycot, polywool, terrycot, etc. As the name suggests, these are made by mixing two types of fibres. Polycot is a mixture of polyester and cotton. Polywool is a mixture of polyester and wool.

We wear sweaters and use shawls or blankets in the winter. Many of these are actually not made from natural wool, though they appear to resemble wool. These are prepared from another type of synthetic fibre called **acrylic**. The wool obtained from natural sources is quite expensive, whereas clothes made from acrylic are relatively cheap. They are available in a variety of colours. Synthetic fibres are more durable and affordable which makes them more popular than natural fibres.

You have already performed an activity of burning natural and synthetic fibres (Activity 3.6 of Class VII). What did you observe? When you burn synthetic fibres you find that their behaviour is different from that of the natural fibres. You must have noticed that synthetic fibres melt on heating. This is actually a disadvantage of synthetic fibres. If the clothes catch fire, it can be disastrous. The fabric melts and sticks to the body of the person wearing it. We should, therefore, not wear synthetic clothes while working in the kitchen or in a laboratory.

Oh! Now I understand why my mother never wears polyester clothes while working in the kitchen.

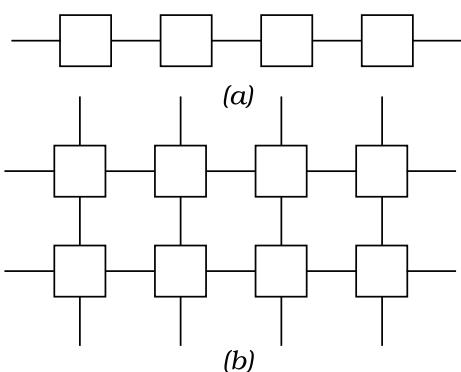
All the synthetic fibres are prepared by a number of processes using raw materials of petroleum origin, called **petrochemicals**.

3.3 Characteristics of Synthetic Fibres

Imagine that it is a rainy day. What kind of umbrella would you use and why? Synthetic fibres possess unique characteristics which make them popular dress materials. They dry up quickly, are durable, less expensive, readily available and easy to maintain. Perform the following activity and learn for yourself.

Activity 3.2

Take two cloth pieces of the same size, roughly half a metre square each. One of these should be from natural fibre. The other could be a synthetic fibre. You can take help of your parents in selecting these pieces. Soak the pieces in different mugs each containing the same amount of water. Take the pieces out of the containers after five minutes and spread them in the sun for a few minutes. Compare the volume of the water remaining in each container.


Do synthetic fabrics soak less/more water than the natural fabrics? Do they take less/more time to dry?

What does this activity tell you about the characteristics of the synthetic fabrics?

Find out from your parents about the durability, cost and maintenance of these fabrics, compared to the natural fabrics.

3.4 Plastics

You must be familiar with many plastic articles used everyday. Make a list of such items and their uses.

Fig. 3.6 : (a) Linear (b) Cross-linked arrangements

Plastic is also a polymer like the synthetic fibre. All plastics do not have the same type of arrangement of units. In some it is linear, whereas in others it is cross-linked. (Fig. 3.6). Plastic articles are available in all possible shapes and sizes as you can see in Fig. 3.7. Have you ever wondered how this is possible? The fact is that plastic is easily mouldable i.e. can be shaped in any form. Plastic can be recycled, reused, coloured, melted, rolled into sheets or made into wires. That is why it finds such a variety of uses.

Fig. 3.7 : Various articles made of plastics

Polythene (Poly+ethene) is an example of a plastic. It is used for making commonly used polythene bags.

Now, try to bend a piece of plastic yourself. Can all the plastic articles be bent easily?

You will observe that some plastic articles can bend easily while some break when forced to bend. When we

add hot water to a plastic bottle, it gets deformed. Such plastic which gets deformed easily on heating and can be bent easily are known as **thermoplastics**. Polythene and PVC are some of the examples of thermoplastics. These are used for manufacturing toys, combs and various types of containers.

On the other hand, there are some plastics which when moulded once, can not be softened by heating. These are called **thermosetting plastics**. Two examples are bakelite and melamine. Bakelite is a poor conductor of heat and electricity. It is used for making electrical switches, handles of various utensils, etc. Melamine is a versatile material. It resists fire and can tolerate heat better than other plastics. It is used for making floor tiles, kitchenware and fabrics which resist fire. Fig. 3.8 shows the various uses of thermoplastics and thermosetting plastics.

Articles made of thermosetting plastics

Articles made of thermoplastics

Fig. 3.8 : Some articles made of plastic

3.5 Plastics as Materials of Choice

Today if we think of storing a food item, water, milk, pickles, dry food etc., plastic containers seem most convenient. This is because of their light weight, lower price, good strength and easy handling. Being lighter as compared to metals, plastics are used in cars, aircrafts and space crafts, too. The list is endless if we start counting articles like slippers, furniture, decoration pieces, etc.

Now, let us discuss the characteristic properties of plastics.

Plastic is Non-reactive

You know that metals like iron get rusted when left exposed to moisture and air. But plastics do not react with water and air. They are not corroded easily. That is why they are used to store various kinds of material, including many chemicals.

Plastic is Light, Strong and Durable

Talk to your parents or grandparents about the types of buckets that were used in the past. What is the material of the buckets or mugs you are using today? What are the advantages of using a plastic container? Since plastic is very light, strong, durable and can be moulded into different shapes and sizes, it is used for various purposes. Plastics are generally cheaper than metals. They are widely used in industry and for household articles. Make a list of different kinds of plastic containers that you use in daily life.

Plastics are Poor Conductors

You have learnt above that plastics are poor conductors of heat and electricity. That is why electrical wires have plastic covering, and handles of screw drivers are made of plastic. As mentioned above, handles of frying pans are also made of plastic.

- Fire-proof plastics: Although synthetic fibre catches fire easily, it is interesting to know that the uniforms of firemen have coating of melamine plastic to make them flame resistant.

Did You Know?

- Plastics find extensive use in the healthcare industry. Some examples of their use are the packaging of tablets, threads used for stitching wounds, syringes, doctors' gloves and a number of medical instruments.
- Special plastic cookware is used in microwave ovens for cooking food. In microwave ovens, the heat cooks the food but does not affect the plastic vessel.
- Teflon is a special plastic on which oil and water do not stick. It is used for non-stick coating on cookwares.

3.6 Plastics and the Environment

When we go to the market, we usually get things wrapped in plastic or packed in polythene bags. That is one reason why plastic waste keeps getting accumulated in our homes. Ultimately, plastic finds its way to the garbage. Disposal of plastic is a major problem. Why?

A material which gets decomposed through natural processes, such as action by bacteria, is called **biodegradable**. A material which is not easily decomposed by natural processes is termed **non-biodegradable**.

Look at Table 3.3.

Table 3.3

Type of Waste	Approximate Time taken to Degenerate	Nature of Material
Peels of vegetable and fruits, leftover foodstuff, etc.	1 to 2 weeks	Biodegradable
Paper	10 to 30 days	Biodegradable
Cotton cloth	2 to 5 months	Biodegradable
Wood	10 to 15 years	Biodegradable
Woollen clothes	About a year	Biodegradable
Tin, aluminium, and other metal cans	100 to 500 years	Non-biodegradable
Plastic bags	Several years	Non-biodegradable

- Source: <http://edugreen.teri.res.in/explore/solwaste/types.htm>

Since plastic takes several years to decompose, it is not environment friendly. It causes environmental pollution. Besides, the burning process in the synthetic material is quite slow and it does not get completely burnt easily. In the process it releases lots of poisonous fumes into the atmosphere causing air pollution. How can this problem be solved?

Have you ever seen a garbage dump where animals are eating garbage? In the process of eating the food waste they swallow materials like polythene bags and wrappers of food. Can you imagine the consequences? The plastic material chokes the respiratory system of these animals, or forms a lining in their stomachs and can be the cause of their death.

The polybags carelessly thrown here and there are responsible for clogging the drains, too. Sometimes we are very careless and throw the wrappers of chips, biscuits and other eatables on the road or in parks or picnic places. Should we not think twice before doing so? As a responsible citizen what measures do you suggest to keep public places clean and free of plastic?

Avoid the use of plastics as far as possible. Make use of bags made of cotton or jute when you go for shopping. The biodegradable and non-biodegradable wastes should be collected separately and disposed off separately. Practise this in your homes. Can you suggest some other ways in which you can contribute towards reducing the use of plastic materials?

It is better to recycle plastic waste. Most of the thermoplastics can be recycled. Make a list of items that can be recycled. However, during recycling certain colouring agents are added. This limits its usage especially for storage of food.

As a responsible citizen remember the **5 R** principle. **Reduce, Reuse, Recycle, Recover and Refuse.** Develop habits which are environment friendly.

Fibre-wise

- ⦿ Do not throw plastic bags in the water bodies or on the road.
- ⦿ Take a cotton carry bag or a jute bag while going for shopping.
- ⦿ Try to minimise the use of plastic materials e.g., use a steel lunch box instead of a plastic one.

KEYWORDS

ACRYLIC

ARTIFICIAL SILK

NYLON

PLASTIC

POLYESTER

POLYMER

POLYTHENE

RAYON

SYNTHETIC FIBRES

TERYLENE

THERMOPLASTICS

THERMOSETTING PLASTICS

WHAT YOU HAVE LEARNT

- ⇒ Synthetic fibres and plastics, like natural fibres, are made of very large units called polymers. Polymers are made up of many smaller units.
- ⇒ While natural fibres are obtained from plants and animals, synthetic fibres are obtained by chemical processing of petrochemicals. Like natural fibres, these fibres can also be woven into fabrics.
- ⇒ Synthetic fibres find uses ranging from many household articles like ropes, buckets, furniture, containers, etc., to highly specialised uses in aircrafts, ships, space-crafts, healthcare, etc.
- ⇒ Depending upon the types of chemicals used for manufacturing synthetic fibres, they are called Rayon, Nylon, Polyester and Acrylic.
- ⇒ The different types of fibres differ from one another in their strength, water absorbing capacity, nature of burning, cost, durability etc.
- ⇒ Today, life without plastics cannot be imagined. Be it home, or outside, plastic is everywhere.
- ⇒ The waste created by plastics is not environment friendly. On burning, plastics release poisonous gases. On dumping in the ground they may take years to degenerate. This is because of their non-biodegradable nature.
- ⇒ We need to use synthetic fibres and plastics in such a manner that we can enjoy their good qualities and at the same time minimise the environmental hazards for the living communities.

Exercises

1. Explain why some fibres are called synthetic.
2. Mark (✓) the correct answer.
Rayon is different from synthetic fibres because
 - (a) it has a silk-like appearance.
 - (b) it is obtained from wood pulp.
 - (c) its fibres can also be woven like those of natural fibres.
3. Fill in the blanks with appropriate words.
 - (a) Synthetic fibres are also called _____ or _____ fibres.
 - (b) Synthetic fibres are synthesised from raw material called _____.
 - (c) Like synthetic fibres, plastic is also a _____.
4. Give examples which indicate that nylon fibres are very strong.
5. Explain why plastic containers are favoured for storing food.
6. Explain the difference between thermoplastic and thermosetting plastics.
7. Explain why the following are made of thermosetting plastics.
 - (a) Saucepan handles
 - (b) Electric plugs/switches/plug boards
8. Categorise the materials of the following products into 'can be recycled' and 'cannot be recycled'.
Telephone instruments, plastic toys, cooker handles, carry bags, ball point pens, plastic bowls, plastic covering on electrical wires, plastic chairs, electrical switches.
9. Rana wants to buy shirts for summer. Should he buy cotton shirts or shirts made from synthetic material? Advise Rana, giving your reason.
10. Give examples to show that plastics are noncorrosive in nature.
11. Should the handle and bristles of a tooth brush be made of the same material? Explain your answer.
12. 'Avoid plastics as far as possible'. Comment on this advice.

13. Match the terms of column **A** correctly with the phrases given in column **B**.

A

- (i) Polyester
- (ii) Teflon
- (iii) Rayon
- (iv) Nylon

B

- (a) Prepared by using wood pulp
- (b) Used for making parachutes and stockings
- (c) Used to make non-stick cookwares
- (d) Fabrics do not wrinkle easily

14. 'Manufacturing synthetic fibres is actually helping conservation of forests'. Comment.

15. Describe an activity to show that thermoplastic is a poor conductor of electricity.

Extended Learning — Activities and Projects

1. Have you heard of the campaign : "Say No To Plastics". Coin a few more slogans of this kind. There are certain governmental and non-governmental organisations who educate the general public on how to make wise use of plastics and develop environment friendly habits. Find out organisations in your area which are carrying out awareness programmes. If there is none, form one.
2. Organise a debate in the school. Children may be given an option to role play as manufacturers of synthetic fabrics or those of fabrics from natural sources. They can then debate on the topic 'My Fabric is Superior'.
3. Visit five families in your neighbourhood and enquire about the kind of clothes they use, the reason for their choice and advantages of using them in terms of cost, durability and maintenance. Make a short report and submit it to your teacher.
4. Devise an activity to show that organic waste is biodegradable while plastic is not.

Did You Know?

Nylon appears like silk. It is strong and flexible. These endearing qualities of nylon created a public sensation, or nylon mania, when it was introduced in 1939. Women's stockings made from this new fibre were in great demand. But, unfortunately, most of the nylon production had to be diverted to making parachutes during the Second World War (1939-1945). After the war, when production of stockings resumed, supply did not match the demand. There was a huge black market for this product. Women had to wait for hours in queues to get a pair. Often there were nylon riots.

4 MATERIALS : METALS AND NON-METALS

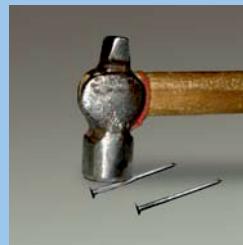
You are familiar with a number of materials like iron, aluminium, copper, etc. Some materials have been given in Table 4.1.

Table 4.1 : Appearance and Hardness of Materials

Object/ Material	Appearance (Shiny/Dull)	Hardness (Very hard/ Not very hard)
Iron		
Coal		
Sulphur		
Aluminium		
Copper		

Can you name the materials which are metals? The rest of the materials in Table 4.1 are non-metals. Metals can be distinguished from non-metals on the basis of their physical and chemical properties. Recall that lustre and hardness are physical properties.

4.1 Physical Properties of Metals and Non-metals


Have you ever seen a blacksmith beating an iron piece or an article made up of iron, like a spade, a shovel, an axe? Do you find a change in the shape of these articles on beating? Would you expect

a similar change if we try to beat a piece of coal?

Let us find out.

Activity 4.1

Take a small iron nail, a coal piece, a piece of thick aluminium wire and a pencil lead. Beat the iron nail with a hammer (Fig. 4.1). (*But take care that you don't hurt yourself in the process.*) Try to hit hard. Hit hard

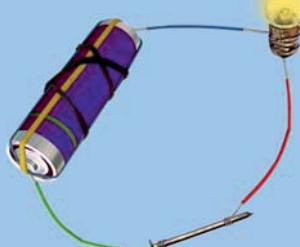
Fig. 4.1 : Beating an iron nail with hammer

the aluminium wire also. Then repeat the same kind of treatment on the coal piece and pencil lead. Record your observations in Table 4.2.

Table 4.2 : Malleability of Materials

Object/ Material	Change in Shape (Flattens/Breaks into pieces)
Iron nail	
Coal piece	
Aluminium wire	
Pencil lead	

You saw that the shape of the iron nail and the aluminium wire changed on beating. If they were beaten harder these could be changed into sheets. You might be familiar with silver foil used for decorating sweets. You must also be familiar with the aluminium foil used for wrapping food. The property of metals by which they can be beaten into thin sheets is called **malleability**. This is a characteristic property of metals. As you must have noticed, materials like coal and pencil lead do not show this property. Can we call these metals?


Can you hold a hot metallic pan which is without a plastic or a wooden handle and not get hurt? Perhaps not! Why? Try to list some other experiences in which a wooden or plastic handle protects you from being hurt while handling hot things. On the basis of these experiences what can you say about the conduction of heat by wood and plastic?

You must have seen an electrician using his screw driver. What kind of handle does it have? Why?

Let us find out.

Activity 4.2

Recall how to make an electric circuit to test whether electricity can pass through an object or not (Fig. 4.2). You might have performed

Fig. 4.2 : Electric tester

the activity with various objects in Class VI. Now, repeat the activity with the materials mentioned in Table 4.3. Observe and group these materials into good conductors and poor conductors.

Table 4.3 : Electrical Conductivity of Materials

S.No.	Materials	Good Conductor / Poor Conductor
1.	Iron rod/nail	
2.	Sulphur	
3.	Coal piece	
4.	Copper wire	

You observe that iron rod, nail and copper wire are good conductors while rolled sulphur piece and coal piece are poor conductors.

Oh! The meaning of recalling our experiences and then of this activity was to show that metals are good conductors of heat and electricity. We learnt this in Class VI.

Where do you find the use of aluminium and copper wires? Have you seen wires of coal? Definitely not!

The property of metal by which it can be drawn into wires is called **ductility**.

Have you ever noticed the difference in sound on dropping an iron sheet/plate, a metal coin, and a piece of coal on the floor? If not, you can try it now.

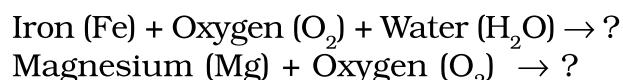
Do you note any difference in the sound produced?

Have you seen wooden bells in temples? Can you give a reason?

The things made of metals produce a ringing sound when struck hard. Suppose you have two boxes similar in appearance, one made of wood and the other of metal. Can you tell which box is made of metal by striking both the boxes?

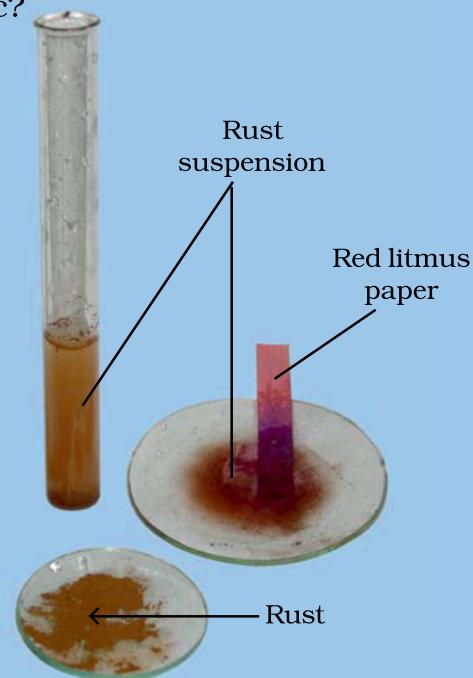
Since metals produce ringing sounds, they are said to be **sonorous**. The materials other than metals are not sonorous.

After performing the above activities, we can say that some materials are **hard, lustrous, malleable, ductile, sonorous and good conductors of heat and electricity**. The materials which generally possess these properties are called metals. The examples of metals are iron, copper, aluminium, calcium, magnesium, etc. In contrast, materials like coal and sulphur are soft and dull in appearance. They break down into a powdery mass on tapping with a hammer. They are not sonorous and are poor conductors of heat and electricity. These materials are called **non-metals**. The examples of non-metals are sulphur, carbon, oxygen, phosphorus, etc.


Metals like sodium and potassium are soft and can be cut with a knife. Mercury is the only metal which is found in liquid state at room temperature. These are exceptions.

4.2 Chemical Properties of Metals and Non-metals

Reaction with Oxygen


You are familiar with the phenomenon of rusting of iron. Recall the reaction by

which rust is formed. You had also performed in Class VII an activity of burning a magnesium ribbon in air. You had learnt that in both the processes oxide formation takes place. Complete the following reactions of iron and magnesium with oxygen.

Activity 4.3

Let us check the nature of rust formed as a result of the reaction between iron, oxygen and water. Collect a spoonful of rust and dissolve it in a very little amount of water. You will find that the rust remains suspended in water. Shake the suspension well. Test the solution with red and blue litmus papers (Fig. 4.3). What do you observe? Is the solution acidic or basic?

Fig. 4.3 : Testing the nature of rust

Does copper also get rusted? I have seen a greenish deposit on the surface of copper vessels.

When a copper vessel is exposed to moist air for long, it acquires a dull green coating. The green material is a mixture of copper hydroxide (Cu(OH)_2) and copper carbonate (CuCO_3). The following is the reaction

$$2\text{Cu} + \underbrace{\text{H}_2\text{O} + \text{CO}_2 + \text{O}_2}_{\text{moist air}} \rightarrow \text{Cu(OH)}_2 + \text{CuCO}_3$$

Now recall the activity of burning magnesium ribbon. The ash obtained on burning magnesium ribbon is dissolved in water and tested for its acidic/basic nature.

Is the solution acidic or basic? How do you ascertain this?

You must have observed that the red litmus turns blue. So, oxide of magnesium is also basic in nature. In general, metallic oxides are basic in nature.

Let us now observe the reaction of non-metals with oxygen.

Activity 4.4

(To be demonstrated by the teacher in the class)

Take a small amount of powdered sulphur in a deflagrating spoon and heat it. If deflagrating spoon is not available, you may take a metallic cap of any bottle and wrap a metallic wire around it and give it the shape shown in Fig. 4.4 (a).

As soon as sulphur starts burning, introduce the spoon into a gas jar/glass tumbler [Fig. 4.4 (a)]. Cover the tumbler with a lid to ensure that the gas produced does not escape. Remove the spoon after some time. Add a small quantity of water into the tumbler and quickly replace the lid. Shake the tumbler well. Check the solution with red and blue litmus papers [Fig. 4.4 (b)].

Fig. 4.4 (a) : Burning of sulphur powder

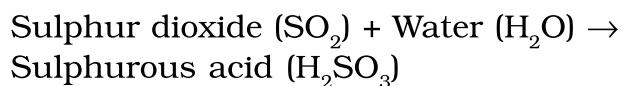


Fig. 4.4 (b) : Testing of solution with litmus papers

Table 4.4 : Metals and Non-metals in Acids and Bases

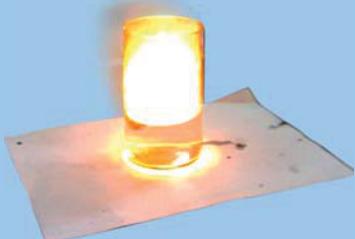
S.No.	Name of the Base	Metal	Name of the Acid	Non-metal
1.	Calcium hydroxide	Calcium	Sulphuric acid	Sulphur
2.				
3.				
4.				
5.				

The name of the product formed in the reaction of sulphur and oxygen is sulphur dioxide gas. When sulphur dioxide is dissolved in water sulphurous acid is formed. The reaction can be given as follows:

The sulphurous acid turns blue litmus paper red. Generally, oxides of non-metals are acidic in nature.

Recall the name of some of the laboratory acids and bases you have read in Class VII. Note down their names in Table 4.4. Identify the metal or non-metal present in them which forms oxides with oxygen.

Reaction with Water


Let us see how metals and non-metals react with water.

Sodium metal is very reactive. It reacts vigorously with oxygen and water. A lot of heat is generated in the reaction. It is, therefore, stored in kerosene.

Activity 4.5

(To be demonstrated by the teacher. During demonstration special care should be taken that the size of the sodium metal piece is roughly the size of a wheat grain. It should be held with a pair of tongs.)

Take a 250 mL beaker/glass tumbler. Fill half of it with water. Now carefully cut a small piece of sodium metal. Dry it using filter paper and wrap it in a small piece of cotton. Put the sodium piece wrapped in cotton into the beaker. Observe carefully. *(During observation keep away from the beaker)*. When reaction stops touch the beaker. What do you feel? Has the beaker become hot? Test the solution with red and blue litmus papers. Is the solution acidic or basic?

Fig. 4.5 : Reaction of sodium with water

You observed that sodium reacts vigorously with water. Some other metals do not do so. For example, iron reacts with water slowly.

Generally, non-metals do not react with water though they may be very reactive in air. Such non-metals are stored in water. For example,

phosphorus is a very reactive non-metal. It catches fire if exposed to air. To prevent the contact of phosphorus with atmospheric oxygen, it is stored in water.

Reactions with Acids

Let us see how metals and non-metals behave with acids.

Activity 4.6

(Warning : Keep the mouth of the test tube away from your face. Use test tube holder to hold the test tube.)

Take samples of metals and non-metals listed in Table 4.5 in separate test tubes and label them as A, B, C, D, E, and F. With the help of a dropper add 5 mL of dilute hydrochloric acid to each test tube one by one. Observe the reactions carefully. If no reaction occurs in the cold solution, warm the test tube gently. Bring a burning matchstick near the mouth of each test tube.

Repeat the same activity using dilute sulphuric acid instead of the dilute hydrochloric acid. Record your observations in Table 4.5.

Table 4.5 : Reaction of Metals and Non-metals with Acids

Test tube Label	Metal/ Non-metal	Reaction with Dilute Hydrochloric Acid		Reaction with Dilute Sulphuric Acid	
		Room Temperature	Warm	Room Temperature	Warm
A	Magnesium (ribbon)				
B	Aluminium (foil)				
C	Iron (filings)				
D	Copper (peeled flexible wire)				
E	Charcoal (powder)				
F	Sulphur (powder)				

Is there a difference in the way metals and non-metals react with acids? What could the 'pop' sound in some cases be due to when a burning match stick is brought near the mouth of the test tubes?

You must have found that non-metals generally do not react with acids but metals react with acids and produce hydrogen gas that burns with a 'pop' sound. You must have noticed that copper does not react with dilute hydrochloric acid even on heating but it reacts with sulphuric acid.

Reactions with Bases

Activity 4.7

(To be demonstrated by the teacher. During the preparation of sodium hydroxide solution, care should be taken that pellets of sodium hydroxide are handled with a plastic spatula).

Prepare a fresh solution of sodium hydroxide in a test tube by dissolving 3-4 pellets of it in 5 mL of water. Drop a piece of aluminium foil into it. Bring a burning match stick near the mouth of the test tube. Observe carefully.

What does the 'pop' sound indicate? As before, the 'pop' sound indicates the presence of hydrogen gas.

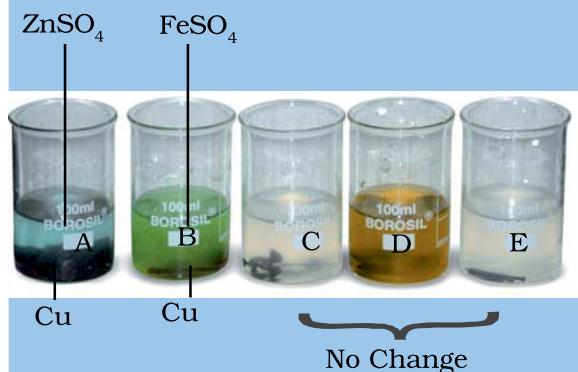
Metals react with sodium hydroxide to produce hydrogen gas.

Reactions of non-metals with bases are complex.

Displacement Reactions

Recall the activity of the reaction between copper sulphate and iron that you

performed in Class VII. Let us observe some more reactions of that kind.


Activity 4.8

Take five 100 mL beakers and label them A, B, C, D and E. Take about 50 mL of water in each beaker. Dissolve in each beaker a teaspoonful of each substance as indicated in Fig. 4.6 (a).

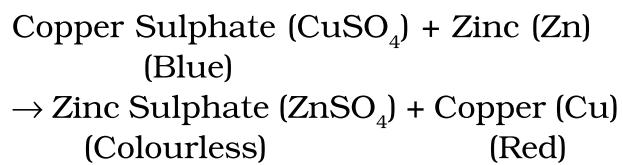
- Keep the beakers undisturbed for some time.
- Record your observations in your note book.

(a)

(b)

Beaker A : Copper sulphate (CuSO_4) + Zinc granule (Zn)

Beaker B : Copper sulphate (CuSO_4) + Iron nail (Fe)


Beaker C : Zinc sulphate (ZnSO_4) + Copper turnings (Cu)

Beaker D : Iron sulphate (FeSO_4) + Copper turnings (Cu)

Beaker E : Zinc sulphate (ZnSO_4) + Iron nail (Fe)

Fig. 4.6 (a) and (b) : Displacement reactions

What changes do you observe in the various beakers? You have read that one metal displaces another metal from its compound in aqueous solution. In beaker 'A' zinc (Zn) replaces copper (Cu) from copper sulphate (CuSO_4). That is why the blue colour of copper sulphate disappears and a powdery red mass of copper is deposited at the bottom of the beaker. The reaction can be represented as follows:

You can write down the reaction taking place in beaker 'B' in a similar manner.

I have understood the reactions taking place in beakers 'A' and 'B'. But I am still confused why there is no change in beakers 'C', 'D' and 'E'?

There could have been displacement of zinc by copper in beaker 'C' and by iron in beaker 'E'. Similarly iron could be displaced by copper in beaker 'D'.

Since we do not see any change in beaker C, we can infer that copper is not able to replace zinc from zinc sulphate. But why? When zinc can replace copper in beaker 'A' why cannot copper replace zinc in beaker 'C'? Remember that science is not

arbitrary. It follows definite rules based on facts. And the rule here is that zinc is more reactive than copper and iron. A more reactive metal can replace a less reactive metal, but a less reactive one cannot replace a more reactive metal. Now you can understand why there are no displacement reactions in beakers D and E also. Can you guess the sequence of metals from more reactive to less reactive among zinc, iron and copper?

4.3 Uses of Metals and Non-metals

You should be able to guess why metals are used in making machinery, automobiles, aeroplanes, trains, satellites, industrial gadgets, cooking utensils, water boilers, etc. You are also familiar with the uses of some non-metals. Here are some interesting ones. We are sure that you will guess them right:

- Non-metal is essential for our life which all living beings inhale during breathing,
- Non-metals used in fertilisers to enhance the growth of plants,
- Non-metal used in water purification process,
- Non-metal used in the purple coloured solution which is applied on wounds as an antiseptic,
- Non-metals used in crackers.

You may add some more uses of metals and non-metals from your experiences.

I heard that magnesium is found in plants. In what form is it found in them?

The doctor reported iron deficiency in my body. Where is iron in my body?

In Class VII, you have learnt that in a chemical reaction, new substances are formed. These substances are different from those which underwent the reaction. Now, if a substance cannot be broken down further by chemical reactions, by cooling, heating, or by electrolysis, it is called 'element'. Sulphur is an element. So is iron. Carbon, too, is an element. The smallest unit of an element is atom. A sample of an element contains only one kind of atom. The atom of an element remains unaffected by physical changes in the element. For example, an atom of liquid sulphur would be exactly the same as the atom of solid or vapour sulphur.

Although we have an infinite variety of substances in the universe, the number of elements forming these substances is limited. There are no more than 94 naturally occurring elements. An important classification of elements is in terms of metals and non-metals. Most of the elements are metals. The remaining are either non-metals or metalloids. Metalloids possess character of both metals and non-metals.

KEYWORDS

ATOM

CONDUCTOR

DISPLACEMENT

REACTION

DUCTILITY

ELEMENTS

HARDNESS

MALLEABILITY

METALS

METALLOIDS

NON-METALS

SONOROUS

WHAT YOU HAVE LEARNT

- ⇒ Metals are lustrous whereas non-metals have no lustre.
- ⇒ Generally, metals are malleable and ductile. Non-metals do not have these properties.
- ⇒ Generally, metals are good conductors of heat and electricity but non-metals are poor conductors.
- ⇒ On burning, metals react with oxygen to produce metal oxides which are basic in nature. Non-metals react with oxygen to produce non-metallic oxides which are acidic in nature.
- ⇒ Some metals react with water to produce metal hydroxides and hydrogen gas. Generally, non-metals do not react with water.
- ⇒ Metals react with acids and produce metal salts and hydrogen gas. Generally, non-metals do not react with acids.
- ⇒ Some metals react with bases to produce hydrogen gas.
- ⇒ More reactive metals displace less reactive metals from their compounds in aqueous solutions.
- ⇒ Metals and non-metals are used widely in every day life.

Exercises

1. Which of the following can be beaten into thin sheets?
(a) Zinc (b) Phosphorus (c) Sulphur (d) Oxygen
2. Which of the following statements is correct?
(a) All metals are ductile.
(b) All non-metals are ductile.
(c) Generally, metals are ductile.
(d) Some non-metals are ductile.

3. Fill in the blanks.

- Phosphorus is a very _____ non-metal.
- Metals are _____ conductors of heat and _____.
- Iron is _____ reactive than copper.
- Metals react with acids to produce _____ gas.

4. Mark 'T' if the statement is true and 'F' if it is false.

- Generally, non-metals react with acids. ()
- Sodium is a very reactive metal. ()
- Copper displaces zinc from zinc sulphate solution. ()
- Coal can be drawn into wires. ()

5. Some properties are listed in the following Table. Distinguish between metals and non-metals on the basis of these properties.

Properties	Metals	Non-metals
1. Appearance 2. Hardness 3. Malleability 4. Ductility 5. Heat Conduction 6. Conduction of Electricity		

6. Give reasons for the following.

- Aluminium foils are used to wrap food items.
- Immersion rods for heating liquids are made up of metallic substances.
- Copper cannot displace zinc from its salt solution.
- Sodium and potassium are stored in kerosene.

7. Can you store lemon pickle in an aluminium utensil? Explain.

8. Match the substances given in Column **A** with their uses given in Column **B**.

A	B
(i) Gold	(a) Thermometers
(ii) Iron	(b) Electric wire
(iii) Aluminium	(c) Wrapping food
(iv) Carbon	(d) Jewellery
(v) Copper	(e) Machinery
(vi) Mercury	(f) Fuel

9. What happens when
 - (a) Dilute sulphuric acid is poured on a copper plate?
 - (b) Iron nails are placed in copper sulphate solution?
 Write word equations of the reactions involved.
10. Saloni took a piece of burning charcoal and collected the gas evolved in a test tube.
 - (a) How will she find the nature of the gas ?
 - (b) Write down word equations of all the reactions taking place in this process.
11. One day Reeta went to a jeweller's shop with her mother. Her mother gave an old gold jewellery to the goldsmith to polish. Next day when they brought the jewellery back, they found that there was a slight loss in its weight. Can you suggest a reason for the loss in weight?

Extended Learning — Activities and Projects

1. Prepare Index Cards for any four metals and four non-metals. The card should have information like name of metal/non-metal; its physical properties, chemical properties and its uses.
2. Visit a blacksmith and observe how metals are moulded.
3. Suggest an experiment to compare the conductivity of electricity by iron, copper, aluminium and zinc. Perform the experiment and prepare a short report on the results.
4. Find out the locations of the deposits of iron, aluminium and zinc in India. Mark these in an outline map of India. In which form are the deposits found? Discuss in the class.
5. Discuss with your parents/neighbours/goldsmiths why gold is preferred for making jewellery.
6. Visit the following websites and enjoy the quiz on metals and non-metals:
 - chemistry.about.com/od/testsquizzes/Chemistry_Tests_Quizzes.htm
 - www.gesescience.com/q/qusemet.html
 - www.corrosionsource.com/handbook/periodic/metals.htm

We use various materials for our basic needs. Some of them are found in nature and some have been made by human efforts.

Activity 5.1

Make a list of various materials used by us in daily life and classify them as natural and man-made.

Natural	Man-made

Does this list include air, water, soil and minerals? Since all these are obtained from nature, they are called natural resources.

Can we use all our natural resources forever ?

Can air, water and soil be exhausted by human activities? You have already studied about water in Class VII. Is water a limitless resource?

In the light of the availability of various resources in nature, natural resources can be broadly classified into two kinds:

(i) Inexhaustible Natural Resources:

These resources are present in unlimited quantity in nature and are not likely to be exhausted by human activities. Examples are: sunlight, air.

(ii) Exhaustible Natural Resources: The amount of these resources in nature is limited. They can be exhausted by human activities. Examples of these resources are forests, wildlife, minerals, coal, petroleum, natural gas etc.

Activity 5.2

(It is a group activity)

Take some containers. Fill them with popcorn/peanuts/roasted gram/toffees. Divide students into groups of seven each. Further divide each group into three subgroups containing 1, 2 and 4 students. Label them as first, second and third generation respectively.

These sub-groups represent the consumers. As population is growing, second and third generations have larger number of consumers.

Put one full container for each group on a table. Ask consumers of the first generation from each group to consume eatables from the container of their group. Now, ask the second generation consumers from each group to do the same. Ask students to observe carefully the availability of eatables in each container. If some thing is left in the containers, ask third generation from each group to consume it. Now, finally observe whether all the consumers of the third generation got the eatables or not. Also observe if anything is still left in any of the containers.

Assume that the eatables in the container represent the total availability of an exhaustible natural resource like coal, petroleum or natural gas. Each group may have a different consumption pattern. Are the earlier generations of any group too greedy? It may be that the earlier generations in some groups were concerned about the coming generation(s) and left something for them.

In this chapter we will learn about some exhaustible natural resources like coal, petroleum and natural gas. These were formed from the dead remains of living organisms (fossils). So, these are all known as **fossil fuels**.

5.1 Coal

You may have seen coal or heard about it (Fig. 5.1). It is as hard as stone and is black in colour.

Fig. 5.1: Coal

Coal is one of the fuels used to cook food. Earlier, it was used in railway engines to produce steam to run the engine. It is also used in thermal power plants to produce electricity. Coal is also used as a fuel in various industries.

Story of Coal

Where do we get coal from and how is it formed?

About 300 million years ago the earth had dense forests in low lying wetland areas. Due to natural processes, like flooding, these forests got buried under the soil. As more soil deposited over them, they were compressed. The temperature also rose as they sank deeper and deeper. Under high pressure and high temperature, dead plants got slowly converted to coal. As coal contains mainly carbon, the slow process of conversion of dead vegetation into coal is called carbonisation. Since it was formed from the remains of vegetation, coal is also called a fossil fuel. A coal mine is shown in Fig. 5.2.

Fig. 5.2: A coal mine

When heated in air, coal burns and produces mainly carbon dioxide gas.

Coal is processed in industry to get some useful products such as coke, coal tar and coal gas.

Coke

It is a tough, porous and black substance. It is an almost pure form of carbon. Coke is used in the manufacture of steel and in the extraction of many metals.

Coal Tar

It is a black, thick liquid (Fig. 5.3) with an unpleasant smell. It is a mixture of

Fig. 5.3: Coal tar

about 200 substances. Products obtained from coal tar are used as starting materials for manufacturing various substances used in everyday life and in industry, like synthetic dyes, drugs, explosives, perfumes, plastics, paints, photographic materials, roofing materials, etc. Interestingly, naphthalene balls used to repel moths and other insects are also obtained from coal tar.

These days, bitumen, a petroleum product, is used in place of coal-tar for metalling the roads.

Coal Gas

Coal gas is obtained during the processing of coal to get coke. It is used

Coal gas was used for street lighting for the first time in London in 1810 and in New York around 1820. Now a days, it is used as a source of heat rather than light.

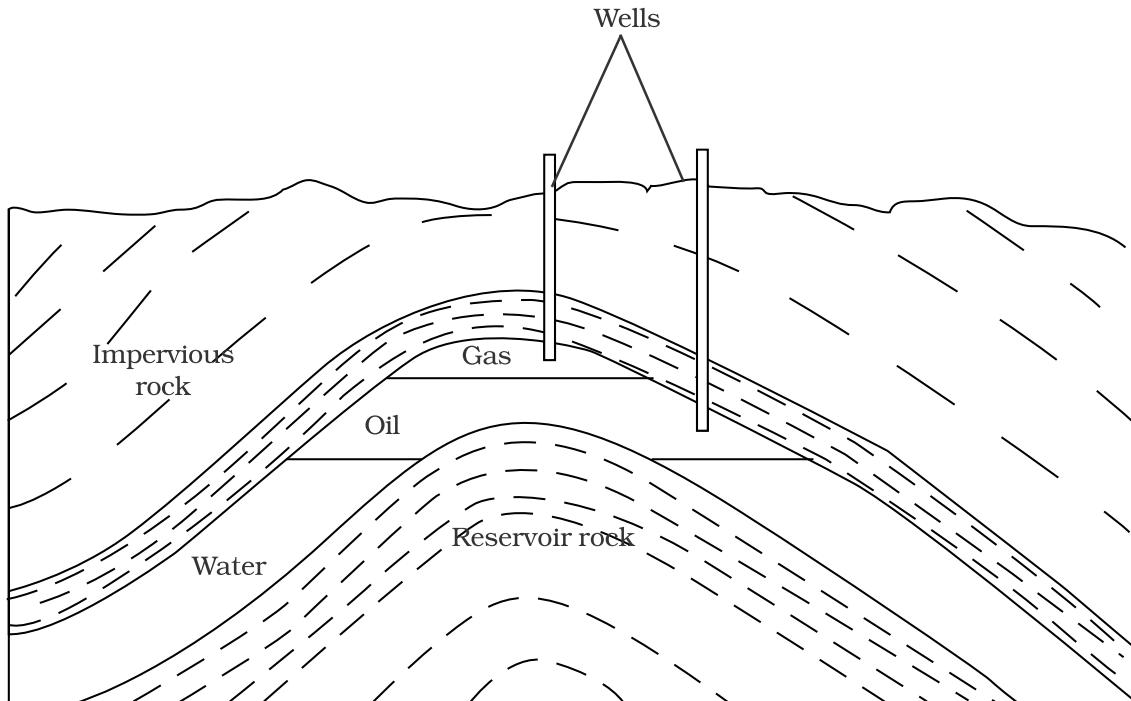
as a fuel in many industries situated near the coal processing plants.

5.2 Petroleum

You know that petrol is used as a fuel in light automobiles such as motor cycles/scooters and cars. Heavy motor vehicles like trucks and tractors run on diesel. Petrol and diesel are obtained from a natural resource called **petroleum**. The word petroleum is derived from petra (rock) and oleum (oil) as it is mined from between the rocks under Earth as shown in Fig. 5.4.

Do you know how petroleum is formed?

Petroleum was formed from organisms living in the sea. As these organisms died, their bodies settled at the bottom of the sea and got covered with layers of sand and clay. Over millions of years, absence of air, high temperature and high pressure


transformed the dead organisms into petroleum and natural gas.

Look at Fig. 5.4. It shows the deposits of petroleum and natural gas. You see that the layer containing petroleum oil and gas is above that of water. Why is it so? Recall that oil and gas are lighter than water and do not mix with it.

The world's first oil well was drilled in Pennsylvania, USA, in 1859. Eight years later, in 1867, oil was struck at Makum in Assam. In India, oil is found in Assam, Gujarat, Mumbai High and in the river basins of Godavari and Krishna.

Refining of Petroleum

Petroleum is a dark oily liquid. It has an unpleasant odour. It is a mixture of various constituents such as petroleum gas, petrol, diesel, lubricating oil, paraffin wax, etc. The process of

Fig. 5.4 : Petroleum and natural gas deposits

Fig. 5.5: A petroleum refinery

separating the various constituents/fractions of petroleum is known as refining. It is carried out in a **petroleum refinery** (Fig. 5.5).

Various constituents of petroleum and their uses are given in Table 5.1.

Many useful substances are obtained from petroleum and natural gas. These are termed as 'Petrochemicals'. These are used in the manufacture of detergents, fibres (polyester, nylon, acrylic etc.), polythene and other man-made plastics. Hydrogen gas obtained from natural gas, is used in the production of fertilisers (urea). Due to its great commercial importance, petroleum is also called 'black gold'.

5.3 Natural Gas

Natural gas is a very important fossil fuel because it is easy to transport through pipes. Natural gas is stored under high pressure as compressed natural gas (CNG). CNG is used for power generation. It is now being used

Table 5.1 Various Constituents of Petroleum and their Uses

S.No.	Constituents of Petroleum	Uses
1.	Petroleum Gas in Liquid form (LPG)	Fuel for home and industry
2.	Petrol	Motor fuel, aviation fuel, solvent for dry cleaning
3.	Kerosene	Fuel for stoves, lamps and for jet aircrafts
4.	Diesel	Fuel for heavy motor vehicles, electric generators
5.	Lubricating oil	Lubrication
6.	Paraffin wax	Ointments, candles, vaseline etc.
7.	Bitumen	Paints, road surfacing

as a fuel for transport vehicles because it is less polluting. It is a cleaner fuel.

The great advantage of CNG is that it can be used directly for burning in homes and factories where it can be supplied through pipes. Such a network of pipelines exists in Vadodara (Gujarat), some parts of Delhi and other places.

Natural gas is also used as a starting material for the manufacture of a number of chemicals and fertilisers. India has vast reserves of natural gas. In our country, natural gas has been found in Tripura, Rajasthan, Maharashtra and in the Krishna Godavari delta.

Can coal, petroleum and natural gas be prepared in the laboratory from dead organisms?

No. Their formation is a very slow process and conditions for their formation cannot be created in the laboratory.

5.4 Some Natural Resources are Limited

You have studied in the beginning of the chapter that some natural resources are exhaustible like fossil fuels, forests, minerals etc.

You know that coal and petroleum are fossil fuels. It required the dead organisms millions of years to get converted into these fuels. On the other hand, the known reserves of these will last only a few hundred years. Moreover, burning of these fuels is a major cause of air pollution. Their use is also linked to global warming. It is therefore necessary that we use these fuels only when absolutely necessary. This will result in better environment, smaller risk of global warming and their availability for a longer period of time.

In India, the Petroleum Conservation Research Association (PCRA) advises people how to save petrol/diesel while driving. Their tips are

- drive at a constant and moderate speed as far as possible,
- switch off the engine at traffic lights or at a place where you have to wait,
- ensure correct tyre pressure.
- ensure regular maintenance of the vehicle.

KEYWORDS

COAL

COAL GAS

COAL TAR

COKE

FOSSIL FUEL

NATURAL GAS

PETROLEUM

PETROLEUM

REFINERY

WHAT YOU HAVE LEARNT

- ⇒ Coal, petroleum and natural gas are fossil fuels.
- ⇒ Fossil fuels were formed from the dead remains of living organisms millions of years ago.
- ⇒ Fossil fuels are exhaustible resources.
- ⇒ Coke, coal tar and coal gas are the products of coal.
- ⇒ Petroleum gas, petrol, diesel, kerosene, paraffin wax, lubricating oil are obtained by refining petroleum.
- ⇒ Coal and petroleum resources are limited. We should use them judiciously.

Exercises

1. What are the advantages of using CNG and LPG as fuels?
2. Name the petroleum product used for surfacing of roads.
3. Describe how coal is formed from dead vegetation. What is this process called?
4. Fill in the blanks.
 - (a) Fossil fuels are _____, _____ and _____.
 - (b) Process of separation of different constituents from petroleum is called _____.
 - (c) Least polluting fuel for vehicle is _____.
5. Tick True/False against the following statements.
 - (a) Fossil fuels can be made in the laboratory. (T/F)
 - (b) CNG is more polluting fuel than petrol. (T/F)
 - (c) Coke is almost pure form of carbon. (T/F)
 - (d) Coal tar is a mixture of various substances. (T/F)
 - (e) Kerosene is not a fossil fuel. (T/F)
6. Explain why fossil fuels are exhaustible natural resources.

- Describe characteristics and uses of coke.
- Explain the process of formation of petroleum.
- The following Table shows the total power shortage in India from 1991–1997. Show the data in the form of a graph. Plot shortage percentage for the years on the Y-axis and the year on the X-axis.

S. No.	Year	Shortage (%)
1	1991	7.9
2	1992	7.8
3	1993	8.3
4	1994	7.4
5	1995	7.1
6	1996	9.2
7	1997	11.5

Extended Learning — Activities and Projects

- Get an outline map of India. Mark the places in the map where coal, petroleum and natural gas are found. Show the places where petroleum refineries are situated.
- Choose any five families of your neighbourhood. Enquire whether their energy consumption (coal, gas, electricity, petrol, kerosene) has increased or decreased in the last five years. Enquire also about the measures they adopt to conserve energy.
- Find out the location of major thermal power plants in India. What could be the reasons for their being located at those places?

For more information, visit:

- www.energyarchive.ca.gov
- web.ccsd.k12.wy.us
- web.pcra.org